BZOJ3747:[POI2015]Kinoman——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3747
https://www.luogu.org/problemnew/show/P3582
共有m部电影,编号为1~m,第i部电影的好看值为w[i]。在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。
参考洛谷题解。
做法很神,为了符合人类直观思路,我们枚举左端点,然后O(log)找到答案最大的右端点。
然后就各种维护,维护一下前缀和,存在每个节点里。
当左端点移动时其原先对应的端点对后续的影响就消除了,此时需要重新修改各种值。
语言不是很好说,可以看我的代码,也可以看洛谷的全注释版。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m,f[N],w[N],nxt[N],head[N];
ll tr[N*],lz[N*];
inline void add(int u,int cnt){
nxt[cnt]=head[u];head[u]=cnt;
}
inline void push(int a){
if(!lz[a])return;
lz[a<<]+=lz[a];lz[a<<|]+=lz[a];
tr[a<<]+=lz[a];tr[a<<|]+=lz[a];
lz[a]=;
}
void mdy(int a,int l,int r,int l1,int r1,int w){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
tr[a]+=w;lz[a]+=w;
return;
}
push(a);
int mid=(l+r)>>;
mdy(a<<,l,mid,l1,r1,w);mdy(a<<|,mid+,r,l1,r1,w);
tr[a]=max(tr[a<<],tr[a<<|]);
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)f[i]=read();
for(int i=;i<=m;i++)w[i]=read();
for(int i=n;i>=;i--)add(f[i],i);
for(int i=;i<=m;i++){
if(head[i]){
if(!nxt[head[i]])mdy(,,n,head[i],n,w[i]);
else mdy(,,n,head[i],nxt[head[i]]-,w[i]);
}
}
ll ans=;
for(int i=;i<=n;i++){
ans=max(ans,tr[]);
int t=nxt[i];
if(t){
mdy(,,n,i,t-,-w[f[i]]);
if(nxt[t])mdy(,,n,t,nxt[t]-,w[f[i]]);
else mdy(,,n,t,n,w[f[i]]);
}else mdy(,,n,i,n,-w[f[i]]);
}
printf("%lld\n",ans);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ3747:[POI2015]Kinoman——题解的更多相关文章
- BZOJ3747 POI2015 Kinoman 【线段树】*
BZOJ3747 POI2015 Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[ ...
- 【线段树】bzoj3747 [POI2015]Kinoman
题解:http://www.cnblogs.com/zyfzyf/p/4105184.html 一.下传标记写法 #include<cstdio> #include<algorith ...
- BZOJ3747: [POI2015]Kinoman
传送门 线段树经典运用. 设$last_i$表示上一个与$i$相同的类型.然后每次更新$[last[i]+1,i]$和$[last[last[i]]+1,last[i]]$的答案就行了. //BZOJ ...
- 2018.08.15 bzoj3747: [POI2015]Kinoman(线段树)
传送门 简单题. 先不管时间复杂度看看怎么做. 对于一段区间[l,r],如果从右端加入一个数a[r+1],对这个区间有什么影响?显然如果区间中已经有了a[r+1]这个数就会产生-a[i+1]的影响,否 ...
- BZOJ3747:[POI2015]Kinoman(线段树)
Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...
- 【BZOJ3747】[POI2015]Kinoman 线段树
[BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...
- Bzoj 3747: [POI2015]Kinoman 线段树
3747: [POI2015]Kinoman Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 553 Solved: 222[Submit][Stat ...
- [bzoj3747][POI2015]Kinoman_线段树
Kinoman bzoj-3747 POI-2015 题目大意:有m部电影,第i部电影的好看值为w[i].现在放了n天电影,请你选择一段区间l~r使得l到r之间的好看值总和最大.特别地,如果同一种电影 ...
- 【BZOJ-3747】Kinoman 线段树
3747: [POI2015]Kinoman Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 715 Solved: 294[Submit][Stat ...
随机推荐
- How To Install Apache Tomcat 7 on CentOS 7 via Yum
摘自:https://www.digitalocean.com/community/tutorials/how-to-install-apache-tomcat-7-on-centos-7-via-y ...
- 虚拟机克隆CentOs后网卡问题
1.直接修改 /etc/sysconfig/network-scripts/ifcfg-eth0 删掉UUID HWADDR配置静态地址 2.修改配置文件vi /etc/udev/rules.d/7 ...
- hdu1061Rightmost Digit(快速幂取余)
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- 聊一聊 Flex 中的 flex-grow、flex-shrink、flex-basis
在使用 flex 布局的时候难以理解的是 flex-grow.flex-shrink.flex-basis 几个属性的用法,下面通过几个例子来演示. flex-basis flex-basis 用于设 ...
- win32绘制自定义类窗口导致绘制11个窗口的解决办法
上网查了一圈也没有找到解决问题的办法,一旦创建了一个窗口,并且在过程函数中绘制窗口,尤其是一些非子窗口的自定义类窗口,都会生成11个窗口(算上主窗口就是12个),但是使用系统通用控件就不会有这种情况的 ...
- 【QT】常用类
官方文档 doc QWidget QWidget类是所有用户界面对象的基类. 窗口部件是用户界面的一个基本单元:它从窗口系统接收鼠标.键盘和其它事件,并且在屏幕上绘制自己. 每一个窗口部件都是矩形的, ...
- Python3 小工具-TCP半连接扫描
from scapy.all import * import optparse import threading def scan(ip,port): pkt=IP(dst=ip)/TCP(dport ...
- [ML] the notes
"Machine Learning is not who has the best algorithm that wins. It is who has the most data.&quo ...
- HDU 1569 方格取数(2)(最大流最小割の最大权独立集)
Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. ...
- 左值&右值
一.引子 我们所谓的左值.右值,正确的说法应该是左值表达式.右值表达式. 因为C++的表达式不是左值就是右值. 在C中,左值指的是既能够出现在等号左边也能出现在等号右边的表达式,右值指的则是只能出现在 ...