https://www.lydsy.com/JudgeOnline/problem.php?id=3747

https://www.luogu.org/problemnew/show/P3582

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。
在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。
你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

参考洛谷题解。

做法很神,为了符合人类直观思路,我们枚举左端点,然后O(log)找到答案最大的右端点。

然后就各种维护,维护一下前缀和,存在每个节点里。

当左端点移动时其原先对应的端点对后续的影响就消除了,此时需要重新修改各种值。

语言不是很好说,可以看我的代码,也可以看洛谷的全注释版。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m,f[N],w[N],nxt[N],head[N];
ll tr[N*],lz[N*];
inline void add(int u,int cnt){
nxt[cnt]=head[u];head[u]=cnt;
}
inline void push(int a){
if(!lz[a])return;
lz[a<<]+=lz[a];lz[a<<|]+=lz[a];
tr[a<<]+=lz[a];tr[a<<|]+=lz[a];
lz[a]=;
}
void mdy(int a,int l,int r,int l1,int r1,int w){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
tr[a]+=w;lz[a]+=w;
return;
}
push(a);
int mid=(l+r)>>;
mdy(a<<,l,mid,l1,r1,w);mdy(a<<|,mid+,r,l1,r1,w);
tr[a]=max(tr[a<<],tr[a<<|]);
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)f[i]=read();
for(int i=;i<=m;i++)w[i]=read();
for(int i=n;i>=;i--)add(f[i],i);
for(int i=;i<=m;i++){
if(head[i]){
if(!nxt[head[i]])mdy(,,n,head[i],n,w[i]);
else mdy(,,n,head[i],nxt[head[i]]-,w[i]);
}
}
ll ans=;
for(int i=;i<=n;i++){
ans=max(ans,tr[]);
int t=nxt[i];
if(t){
mdy(,,n,i,t-,-w[f[i]]);
if(nxt[t])mdy(,,n,t,nxt[t]-,w[f[i]]);
else mdy(,,n,t,n,w[f[i]]);
}else mdy(,,n,i,n,-w[f[i]]);
}
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3747:[POI2015]Kinoman——题解的更多相关文章

  1. BZOJ3747 POI2015 Kinoman 【线段树】*

    BZOJ3747 POI2015 Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[ ...

  2. 【线段树】bzoj3747 [POI2015]Kinoman

    题解:http://www.cnblogs.com/zyfzyf/p/4105184.html 一.下传标记写法 #include<cstdio> #include<algorith ...

  3. BZOJ3747: [POI2015]Kinoman

    传送门 线段树经典运用. 设$last_i$表示上一个与$i$相同的类型.然后每次更新$[last[i]+1,i]$和$[last[last[i]]+1,last[i]]$的答案就行了. //BZOJ ...

  4. 2018.08.15 bzoj3747: [POI2015]Kinoman(线段树)

    传送门 简单题. 先不管时间复杂度看看怎么做. 对于一段区间[l,r],如果从右端加入一个数a[r+1],对这个区间有什么影响?显然如果区间中已经有了a[r+1]这个数就会产生-a[i+1]的影响,否 ...

  5. BZOJ3747:[POI2015]Kinoman(线段树)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  6. 【BZOJ3747】[POI2015]Kinoman 线段树

    [BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...

  7. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  8. [bzoj3747][POI2015]Kinoman_线段树

    Kinoman bzoj-3747 POI-2015 题目大意:有m部电影,第i部电影的好看值为w[i].现在放了n天电影,请你选择一段区间l~r使得l到r之间的好看值总和最大.特别地,如果同一种电影 ...

  9. 【BZOJ-3747】Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 715  Solved: 294[Submit][Stat ...

随机推荐

  1. 用ext_skel,实现一个PHP扩展,添加到PHP并调用

    1 创建函数定义文件 #mkdir /home/phpext #vi mydefined.skel string get_text(string str) 2 根据README所提供的信息创建预定义文 ...

  2. MySql 增加字段 删除字段 修改字段名称 修改字段类型

    //1.增加一个字段 alter table user add COLUMN new1 VARCHAR(20) DEFAULT NULL; //增加一个字段,默认为空 alter table user ...

  3. Linearize an sRGB texture in Photoshop

    From:https://forum.unity.com/threads/bug-with-bypass-srgb-sampling.282469/

  4. VMware SDK使用指南

    刚开始用VMware官方推荐的SDK,真的是又臭又长,代码结构不清晰,易读性差.后来VMware的同学给推荐了一款开源的SDK,一上手感觉工作效率提高了100倍!推荐大家使用~. 该SDK对VMwar ...

  5. ionic 日期插件学习

    <ion-header> <ion-navbar> <ion-title> DateTime </ion-title> </ion-navbar& ...

  6. redis 面试

    Redis有哪些数据结构? 字符串String.字典Hash.列表List.集合Set.有序集合SortedSet. 如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog.G ...

  7. Java进阶知识点:协变与逆变

    一.背景 要搞懂Java中的协办与逆变,不得不从继承说起,如果没有继承,协变与逆变也天然不存在了. 我们知道,在Java的世界中,存在继承机制.比如MochaCoffee类是Coffee类的派生类,那 ...

  8. 【MySQL解惑笔记】Centos7下卸载彻底MySQL数据库

    彻底卸载Yum安装的MySQL数据库 在我第二章MySQL数据库基于Centos7.3-部署过程中,因为以前安装过其它的版本所以没有卸载干净影响后期安装 一.卸载Centos7自带的Maridb数据库 ...

  9. 完全背包问题 :背包dp

    题目描述: 有 N种物品和一个容量是 V 的背包,每种物品都有无限件可用.第 i 种物品的体积是 vi,价值是 wi. 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大.输出最 ...

  10. ElasticSearch 论坛搜索查询语句

    概述 研究论坛搜索如何综合时间和TF/IDF权重. 自定义权重计算的效率问题 数据结构 假设有一个论坛的搜索 字段包括: subject:标题 message:内容 dateline:发布时间 tag ...