题目描述

Farmer John以及他的N(1 <= N <= 2,500)头奶牛打算过一条河,但他们所有的渡河工具,仅仅是一个木筏。 由于奶牛不会划船,在整个渡河过程中,FJ必须始终在木筏上。在这个基础上,木筏上的奶牛数目每增加1,FJ把木筏划到对岸就得花更多的时间。 当FJ一个人坐在木筏上,他把木筏划到对岸需要M(1 <= M <= 1000)分钟。当木筏搭载的奶牛数目从i-1增加到i时,FJ得多花M_i(1 <= M_i <= 1000)分钟才能把木筏划过河(也就是说,船上有1头奶牛时,FJ得花M+M_1分钟渡河;船上有2头奶牛时,时间就变成M+M_1+M_2分钟。后面的依此类推)。那么,FJ最少要花多少时间,才能把所有奶牛带到对岸呢?当然,这个时间得包括FJ一个人把木筏从对岸划回来接下一批的奶牛的时间。

输入

* 第1行: 2个用空格隔开的整数:N 和 M

* 第2..N+1行: 第i+1为1个整数:M_i

输出

* 第1行: 输出1个整数,为FJ把所有奶牛都载过河所需的最少时间

样例输入

5 10
3
4
6
100
1

样例输出

50


题解

dp

f[i]表示运完前i头牛后返回的最小时间。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int sum[2501] , f[2501];
int main()
{
int n , m , i , j , t;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &t);
sum[i] = sum[i - 1] + t;
}
memset(f , 0x7f , sizeof(f));
f[0] = 0;
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j < i ; j ++ )
f[i] = min(f[i] , f[j] + 2 * m + sum[i - j]);
printf("%d\n" , f[n] - m);
return 0;
}

【bzoj1617】[Usaco2008 Mar]River Crossing渡河问题 dp的更多相关文章

  1. BZOJ1617: [Usaco2008 Mar]River Crossing渡河问题

    1617: [Usaco2008 Mar]River Crossing渡河问题 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 654  Solved: 4 ...

  2. BZOJ 1617: [Usaco2008 Mar]River Crossing渡河问题( dp )

    dp[ i ] = max( dp[ j ] + sum( M_1 ~ M_( i - j ) ) + M , sum( M_1 ~ M_i ) ) ( 1 <= j < i )  表示运 ...

  3. 1617: [Usaco2008 Mar]River Crossing渡河问题(dp)

    1617: [Usaco2008 Mar]River Crossing渡河问题 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1219  Solved:  ...

  4. [bzoj1617][Usaco2008 Mar]River Crossing渡河问题_动态规划

    River Crossing渡河问题 bzoj-1617 Usaco-2008 Mar 题目大意:题目链接. 注释:略. 想法:zcs0724出考试题的时候并没有发现这题我做过... 先把m求前缀和, ...

  5. BZOJ 1617: [Usaco2008 Mar]River Crossing渡河问题

    题目 1617: [Usaco2008 Mar]River Crossing渡河问题 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer ...

  6. [Usaco2008 Mar]River Crossing渡河问题[简单DP]

    Description Farmer John以及他的N(1 <= N <= 2,500)头奶牛打算过一条河,但他们所有的渡河工具,仅仅是一个木筏. 由于奶牛不会划船,在整个渡河过程中,F ...

  7. 【BZOJ】1617: [Usaco2008 Mar]River Crossing渡河问题(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1617 裸dp,很好做. 设f[i]表示i头牛到对岸所需最小时间.sum[i]表示运i头牛到对岸的时间 ...

  8. BZOJ 1617 [Usaco2008 Mar]River Crossing渡河问题:dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1617 题意: Farmer John以及他的N(1 <= N <= 2,500 ...

  9. [Usaco2008 Mar]River Crossing渡河问题

    题目描述 Farmer John以及他的N(1 <= N <= 2,500)头奶牛打算过一条河,但他们所有的渡河工具,仅仅是一个木筏. 由于奶牛不会划船,在整个渡河过程中,FJ必须始终在木 ...

随机推荐

  1. Tomcat 8.5 基于 Apache Portable Runtime(APR)库性能优化

    Tomcat可以使用Apache Portable Runtime来提供卓越的性能及可扩展性,更好地与本地服务器技术的集成.Apache Portable Runtime是一个高度可移植的库,位于Ap ...

  2. 20145234黄斐《信息安全系统设计基础》第七周(Linux命令复习)

    已经到了11月,学期过半,而<信息安全系统设计基础>这门课也要到了期中考试了.所以,我在这里,对前半个学期的最基础的知识,做一个复习 复习计划分为两步,本次为Linux命令,下次计划复习g ...

  3. 网络流Edmonds-Karp算法入门

    今天自习课没事干,看书自学了一下网络流中的EK算法.(求最大流) 设s为源点,t为汇点,C为容量矩阵,F为流量矩阵,f为最大流量. 1.初始化F,f 2.用BFS在残量网络中找到一条从s到t的最短增广 ...

  4. mysql c 获取error_code

    #include <stdio.h> #include <mysql.h> int main(int argc, char **argv) { MYSQL *con = mys ...

  5. c和c++的强制类型转换

    我们知道c语言中的类型转换只有一种, TYPE b = (TYPE)a; 而在c++中按照不同作用的转换类型将其细分为三个显示类型转换符号static_cast, const_cast, reinte ...

  6. 浅谈如何提高自动化测试的稳定性和可维护性 (pytest&allure)

    装饰器与出错重试机制 谈到稳定性,不得不说的就是“出错重试”机制了,在自动化测试中,由于环境一般都是测试环境,经常会有各种各种的抽风情况影响测试结果,这样就为测试的稳定性带来了挑战,毕竟谁也不想自己的 ...

  7. lesson 18 Electric currents in modern art

    lesson18 Electric currents in modern art electricity n. 电力:电流; electric adj. 电的:电动的; electronic adj. ...

  8. 接口文档神器--apiui的使用

    接口开发,最麻烦的就是写文档了,曾经我也因为写接口文档苦不堪言:自从使用了apiui接口文档神器,工作效率和文档清晰得到了不止一个档次的提升. 下面介绍一下这个神器的使用: 把文件下载下来,放在网站根 ...

  9. CSP201503-2:数字排序

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  10. java并发总览