~~~题面~~~

题解:

第一眼费用流,,然后想了好久怎么建图,,,最后发现是最小费用可行流的板子题。。。。

其实还没有很懂这个算法,所以这里只是摆一下步骤,以后再补理解吧。

首先一个思路就是转换图,将有上下限的图变为普通的网络流图,然后再跑费用流。

所以建图其实和有上下界的网络流一样的。。。

1,首先建立超级源点汇点ss和tt

2,对于原图中每一条边x ---> y,设其上下界为(l, r),费用为cost,那么连边的时候将流量变为r - l即可

3,对于任意点i,记d[i]为它的富余流量,即入度的下界和 - 出度的下界和。

  若d[i] > 0,则连边ss ----> i, 流量为d[i] , 费用0

  若d[i] < 0,则连边i ----> tt,流量为-d[i],费用0

4,连边t ---> s,流量inf,费用0

答案即为ans + 所有边下界 * 边的费用

其实可以感性的理解为先有了一个不一定合法的解(下界*费用),然后再利用费用流使用最小的代价使得答案合法。

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 400
#define ac 100000
#define inf 2139062143
#define getchar() *o++
char READ[], *o = READ;
int n, ans, s, t1, t;
int last[AC], dis[AC], disflow[AC], d[AC];
int date[ac], Next[ac], haveflow[ac], cost[ac], Head[AC], tot = ;
bool z[AC];
deque<int> q; inline int read()
{
int x=;char c=getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline void add(int f,int w,int S,int C)
{
date[++tot] = w, Next[tot] = Head[f], haveflow[tot] = S, cost[tot] = C, Head[f] = tot;
date[++tot] = f, Next[tot] = Head[w], cost[tot] = -C, Head[w] = tot;
//printf("%d %d %d %d\n",f,w,S,C);
} void pre()
{
int a,b,c;
n=read();
t1 = n + , s = n + , t = n + ;
for(R i=;i<=n;i++)
{
a=read();
for(R j=;j<=a;j++)
{
b=read(),c=read();
--d[i], ++d[b];
ans += c;
add(i, b, inf, c);
}
}
for(R i=;i<=n;i++)
add(i, t1, inf, );
for(R i=;i<=n;i++)
{
if(d[i] > ) add(s, i, d[i], );
if(d[i] < ) add(i, t, -d[i], );
}
add(t1, , inf, );//是费用为0!
} inline void aru()
{
int x = t;
while(x != s)
{
haveflow[last[x]] -= disflow[t];
haveflow[last[x] ^ ] += disflow[t];
x = date[last[x] ^ ];
}
ans += disflow[t] * dis[t];
} bool spfa()
{
int x, now;
dis[s] = , disflow[s] = inf, z[s] = true;
q.push_front(s);
while(!q.empty())
{
x = q.front();
q.pop_front();
z[x] = false;//标记出列
for(R i=Head[x]; i ;i=Next[i])
{
now = date[i];
if(haveflow[i] && dis[now] > dis[x] + cost[i])
{//要有流量啊
dis[now] = dis[x] + cost[i];
last[now] = i;
disflow[now] = min(disflow[x], haveflow[i]);
if(!z[now])
{
z[now] = true;
if(!q.empty() && dis[now] < q.front()) q.push_front(now);
else q.push_back(now);
}
}
}
}
if(dis[t] != inf) aru();
return dis[t] != inf;
} bool spfa1()
{
int x,now;
z[s]=true,dis[s]=,disflow[s]=inf;
q.push_front(s);
while(!q.empty())
{
x=q.front();
q.pop_front();
z[x]=false;
for(int i=Head[x]; i ;i=Next[i])
{
now=date[i];
if(haveflow[i] && dis[now]>dis[x]+cost[i])
{
dis[now]=dis[x]+cost[i];
last[now]=i;
disflow[now]=min(disflow[x],haveflow[i]);//以点为单位记录到这个点时的流量
if(!z[now])
{
z[now] = true;
q.push_front(now);
}
/*if(!z[now] && now!=t)
{
if(!q.empty() && dis[now]<dis[q.front()]) q.push_front(now);
else q.push_back(now);
z[now]=true;
}*/
}
}
}
//更新路径
if(dis[t] != inf) aru();
return dis[t] != inf;
} void work()
{
//printf("%d\n",ans);
memset(dis, , sizeof(dis));
while(spfa())
memset(dis, , sizeof(dis));
printf("%d\n",ans);
} int main()
{
// freopen("in.in","r",stdin);
fread(READ, , , stdin);
pre();
work();
// fclose(stdin);
return ;
}

[AHOI2014/JSOI2014]支线剧情 有上下界费用流的更多相关文章

  1. bzoj3876: [Ahoi2014&Jsoi2014]支线剧情(上下界费用流)

    传送门 一道题让我又要学可行流又要学zkw费用流…… 考虑一下,原题可以转化为一个有向图,每次走一条路径,把每一条边都至少覆盖一次,求最小代价 因为一条边每走过一次,就要付出一次代价 那不就是费用流了 ...

  2. 【BZOJ3876】[Ahoi2014]支线剧情 有上下界费用流

    [BZOJ3876][Ahoi2014]支线剧情 Description [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩 ...

  3. BZOJ3876[Ahoi2014&Jsoi2014]支线剧情——有上下界的最小费用最大流

    题目描述 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费 ...

  4. BZOJ3876 AHOI/JSOI2014支线剧情(上下界网络流)

    原图所有边下界设为1上界设为inf花费为时间,那么显然就是一个上下界最小费用流了.做法与可行流类似. 因为每次选的都是最短路增广,且显然不会有负权增广路,所以所求出来的可行流的费用就是最小的. #in ...

  5. BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]

    3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...

  6. 【有源汇上下界费用流】BZOJ 3876 [Ahoi2014]支线剧情

    题目链接: http://www.lydsy.com:808/JudgeOnline/problem.php?id=3876 题目大意: 给定一张拓扑图(有向无环图),每条边有边权,每次只能从第一个点 ...

  7. bzoj3876: [Ahoi2014&Jsoi2014]支线剧情

    题意:给一幅图,从1开始,每条边有边权最少走一遍,可以在任意点退出,问最小花费 题解:上下界费用流,每个边都流一遍,然后为了保证流量平衡,新建源点汇点,跑费用流把流量平衡 /************* ...

  8. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  9. BZOJ2324 ZJOI2011营救皮卡丘(floyd+上下界费用流)

    虽然不一定每次都是由编号小的点向编号大的走,但一个人摧毁的顺序一定是从编号小的到编号大的.那么在摧毁据点x的过程中,其只能经过编号小于x的点.并且这样一定合法,因为可以控制其他人先去摧毁所经过的点.那 ...

随机推荐

  1. SpringBoot学习:添加JSP支持

    项目下载地址:http://download.csdn.NET/detail/aqsunkai/9805821 (一)pom中添加依赖: <!-- https://mvnrepository.c ...

  2. 使用PowerDesign15反向生成数据库

           在Pd15中建立物理模型后,可以通过反向工程直接生成数据库的表结构.主要有以下几个步骤: 1. 首先设置一下数据库配置,选择对应要使用的数据库(此处选择Sql Server 2008 R ...

  3. Appium(Python)驱动手机Chrome浏览器

    手机Chrome浏览器访问淘宝H5与在电脑上访问淘宝H5是一摸一样的: 第一种方法: 直接在电脑Chrome浏览器上打开F12: 第二种方法: 手机连接电脑后, 在手机Chrome浏览器上打开淘宝H5 ...

  4. 第五篇 Flask组件之SQLAchemy及Flask-SQLAlchemy插件/Flask-Script/Flask-migrate/pipreqs模块

    SQLAlchemy组件 一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然 ...

  5. Git 与 GitHub

    Git 这个年代,不会点Git真不行啦,少年别问问什么,在公司你就知道了~ Git是一个协同开发的工具,主要作用是进行版本控制,而且还能自动检测代码是否发生变化. 一. 安装 下载地址:https:/ ...

  6. 栈和队列ADT -数据结构(C语言实现)

    数据结构与算法分析 栈模型 限制插入和删除只能在表的末端的表 表的末端叫做栈顶(top) 支持Push进栈和Pop入栈操作 //LIFO后进先出表 栈的实现 链表实现 类型声明 struct Node ...

  7. 1053 Path of Equal Weight (30 分)(树的遍历)

    题目大意:给出树的结构和权值,找从根结点到叶子结点的路径上的权值相加之和等于给定目标数的路径,并且从大到小输出路径 #include<bits/stdc++.h> using namesp ...

  8. canvas学习(二):渐变与曲线的绘制

    canvas学习(二):渐变与曲线的绘制 一:createLinearGradient()线性渐变: 二:createLinearGradient() 放射状/圆形渐变: 三:createPatter ...

  9. 直接管理内存——new和delete

    一.运算符new 1. 使用new动态分配对象 在自由空间分配的内存是无名的,故new无法为其分配的对象命名,而是返回一个指向该对象的指针 int *pi = new int; //pi指向一个动态分 ...

  10. C语言实验——时间间隔

    Description 从键盘输入两个时间点(24小时制),输出两个时间点之间的时间间隔,时间间隔用“小时:分钟:秒”表示. 如:3点5分25秒应表示为--03:05:25.假设两个时间在同一天内,时 ...