【bzoj4229】选择 离线+LCT
题目描述
输入
输出
样例输入
7 8 7
1 2
1 3
1 4
2 3
3 4
3 7
7 4
5 6
Z 1 4
P 1 3
P 2 4
Z 1 3
P 1 3
Z 6 5
P 5 6
样例输出
Yes
Yes
No
No
题解
离线+LCT
删边很难处理,考虑离线,时间倒流,把删边变为加边处理。
那么问题就转化为 【bzoj4998】星球联盟 。
使用LCT,加边时如果属于同一连通块,则把路径上的点缩成一个边双。并使用并查集维护边双。
时间复杂度 $O(LCT·n\log n)$
#include <set>
#include <cstdio>
#define N 100010
using namespace std;
set<pair<int , int> > s;
int fc[N] , fv[N] , fa[N] , c[2][N] , rev[N] , px[N] , py[N] , opt[N] , qx[N] , qy[N] , ans[N];
char str[5];
int findc(int x)
{
return x == fc[x] ? x : fc[x] = findc(fc[x]);
}
int findv(int x)
{
return x == fv[x] ? x : fv[x] = findv(fv[x]);
}
inline void pushdown(int x)
{
if(rev[x])
{
swap(c[0][c[0][x]] , c[1][c[0][x]]) , rev[c[0][x]] ^= 1;
swap(c[0][c[1][x]] , c[1][c[1][x]]) , rev[c[1][x]] ^= 1;
rev[x] = 0;
}
}
inline bool isroot(int x)
{
return c[0][findv(fa[x])] != x && c[1][findv(fa[x])] != x;
}
void update(int x)
{
if(!isroot(x)) update(findv(fa[x]));
pushdown(x);
}
inline void rotate(int x)
{
int y = findv(fa[x]) , z = findv(fa[y]) , l = (c[1][y] == x) , r = l ^ 1;
if(!isroot(y)) c[c[1][z] == y][z] = x;
fa[x] = z , fa[y] = x , fa[c[r][x]] = y , c[l][y] = c[r][x] , c[r][x] = y;
}
inline void splay(int x)
{
int y , z;
update(x);
while(!isroot(x))
{
y = findv(fa[x]) , z = findv(fa[y]);
if(!isroot(y))
{
if((c[0][y] == x) ^ (c[0][z] == y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
int t = 0;
while(x) splay(x) , c[1][x] = t , t = x , x = findv(fa[x]);
}
inline void makeroot(int x)
{
access(x) , splay(x);
swap(c[0][x] , c[1][x]) , rev[x] ^= 1;
}
void dfs(int x)
{
if(!x) return;
if(fa[x]) fv[x] = findv(fa[x]);
dfs(c[0][x]) , dfs(c[1][x]);
}
inline void link(int x , int y)
{
x = findv(x) , y = findv(y);
if(findc(x) != findc(y)) makeroot(x) , fa[x] = y , fc[fc[x]] = fc[y];
else if(x != y) makeroot(x) , access(y) , splay(y) , dfs(y);
}
int main()
{
int n , m , q , i;
scanf("%d%d%d" , &n , &m , &q);
for(i = 1 ; i <= n ; i ++ ) fc[i] = fv[i] = i;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &px[i] , &py[i]);
for(i = 1 ; i <= q ; i ++ )
{
scanf("%s%d%d" , str , &qx[i] , &qy[i]);
if(str[0] == 'Z') opt[i] = 1 , s.insert(make_pair(min(qx[i] , qy[i]) , max(qx[i] , qy[i])));
}
for(i = 1 ; i <= m ; i ++ )
if(s.find(make_pair(min(px[i] , py[i]) , max(px[i] , py[i]))) == s.end())
link(px[i] , py[i]);
for(i = q ; i ; i -- )
{
if(opt[i]) link(qx[i] , qy[i]);
else ans[i] = (findv(qx[i]) == findv(qy[i]));
}
for(i = 1 ; i <= q ; i ++ )
if(!opt[i])
puts(ans[i] ? "Yes" : "No");
return 0;
}
【bzoj4229】选择 离线+LCT的更多相关文章
- 01 选择 Help > Install New Software,在出现的对话框里,点击Add按钮,在对话框的name一栏输入“ADT”,点击Archive...选择离线的ADT文件,contact all update ....千万不要勾选点击Add按钮,在对话框的name一栏输入“ADT”,点击Archive...选择离线的ADT文件,contact all update ....千万不要勾
引言 好久没碰过android,今天重新搭建了一次环境,遇到的问题记录下载.共以后使用. 安装 软件的软件有jdk+eclipse+adt+sdk 主要记录安装adt和sdk的过程,注意,adt和sd ...
- BZOJ4229选择——LCT+并查集+离线(LCT动态维护边双连通分量)
题目描述 现在,我想知道自己是否还有选择. 给定n个点m条边的无向图以及顺序发生的q个事件. 每个事件都属于下面两种之一: 1.删除某一条图上仍存在的边 2.询问是否存在两条边不相交的路径可以从点u出 ...
- [BZOJ 3531] [Sdoi2014] 旅行 【离线+LCT】
题目链接:BZOJ - 3531 题目分析 题目询问一条路径上的信息时,每次询问有某种特定的文化的点. 每个点的文化就相当于一种颜色,每次询问一条路径上某种颜色的点的信息. 可以使用离线算法, 类似于 ...
- bzoj4229: 选择
Description 现在,我想知道自己是否还有选择. 给定n个点m条边的无向图以及顺序发生的q个事件. 每个事件都属于下面两种之一: 1.删除某一条图上仍存在的边 2.询问是否存在两条边不相交的路 ...
- 在离线环境中使用.NET Core
在离线环境中使用.NET Core 0x00 写在开始 很早开始就对.NET Core比较关注,一改微软之前给人的印象,变得轻量.开源.跨平台.最近打算试着在工作中使用.但工作是在与互联网完全隔离的网 ...
- 离线安装Cloudera Manager 5和CDH5(最新版5.1.3) 完全教程
关于CDH和Cloudera Manager CDH (Cloudera's Distribution, including Apache Hadoop),是Hadoop众多分支中的一种,由Cloud ...
- CentOS 6.4 离线安装 Cloudera 5.7.1 CDH 5.7.1
因为项目开发需要要在本地组建一个Hadoop/Spark集群,除了Hadoop/Spark还要同时安装多个相关的组件,如果一个个组件安装配置,对于一个由多台服务器组成的集群来说,工作量是巨大的. 所以 ...
- Android SDK离线安装方法详解(加速安装) 转
AndroidSDK在国内下载一直很慢··有时候通宵都下不了一点点,最后只有选择离线安装,现在发出离线安装地址和方法,希望对大家有帮助! 离线安装包下载地址:http://dl.vmall.com/c ...
- android离线下载的相关知识
离线下载的功能点如下: 1.下载管理(开始.取消下载). 2.网络判断(Wi-Fi,3G). 3.独立进程. 4.定时和手机催醒. 5.自启动. 选择 ...
随机推荐
- Java和JDK版本的关系
JAVA的版本最开始是1995年的JDK Alpha and Beta版本,第二年发布JDK1.0版本之后就是JDK1.1,JDK1.2.到1998年,不再叫JDK了,而是叫J2SE,但是版本号还是继 ...
- 北京Uber优步司机奖励政策(1月12日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- CakePHP Model中( 获取Session)使用Component的方法
有时候我们需要在Model中使用Session,大家知道CakePHP把操作Session的方法封装为了一个Component, 在Model中正常读取Session的方法: 在 "app_ ...
- atomic是绝对的线程安全么?为什么?如果不是,那应该如何实现?
atomic不是绝对的线程安全.atomic的本意是指属性的存取方法是线程安全的,并不保证整个对象是线程安全的 @property (atomic, assign) int intA; //线程A f ...
- JS中String对象常用的方法
1. stringObject.charAt(index) 参数:index 必需,即字符在字符串中的下标. 返回值: 返回在指定位置的字符.返回的字符是长度为 1的字符串.(length属性 ...
- cf#516A. Make a triangle!(三角形)
http://codeforces.com/contest/1064/problem/A 题意:给出三角形的三条边,问要让他组成三角形需要增加多少长度 题解:规律:如果给出的三条边不能组成三角形,那答 ...
- 拓扑排序 (Ordering Tasks UVA - 10305)
题目描述: 原题:https://vjudge.net/problem/UVA-10305 题目思路: 1.依旧是DFS 2.用邻接矩阵实现图 3.需要判断是否有环 AC代码 #include < ...
- js中的数组对象排序
一.普通数组排序 js中用方法sort()为数组排序.sort()方法有一个可选参数,是用来确定元素顺序的函数.如果这个参数被省略,那么数组中的元素将按照ASCII字符顺序进行排序.如: var ar ...
- 在Excel里面,单元格里输入公式后只显示公式本身,不显示结果,怎么办
这种情况是对Excel进行了设置,设置的就是在单元格中只显示公式,不显示结果,解决的办法有两个: 1 用快捷键CTR+~ 2 点击"公式"选项卡,然后反选里面的"显示公式 ...
- wwnjld团队第二轮迭代成员分数
2014-01-05 第二轮迭代团队内成员分数如下(依据分数分配规则以及团队会议协商所得结果): 吴渊渊 23 汪仁贵 21.5 高小洲 19.5 聂建 22.5 吕家辉 23.5 程志 10