一、Dijkstra 算法的介绍
    Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离,Dijkstra 算法可以用来找到两个城市之间的最短路径。
 
三、Dijkstra 的算法实现
    Dijkstra 算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合,以 E 表示G 中所有边的集合
    (u, v) 表示从顶点 u 到 v 有路径相连,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负花费值(cost),边的花费可以想像成两个顶点之间的距离。
任两点间路径的花费值,就是该路径上所有边的花费值总和。
    已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t 的最低花费路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。
 
符号代表:有向图:G   来源顶点:S      顶点:V      边:E          发费值:w(u, v) 
                
                
Dijkstra 算法的实现一(维基百科)
注意:u := Extract_Min(Q) 在顶点集合 Q 中搜索有最小的 d[u] 值的顶点 u。这个顶点被从集合 Q 中删除并返回给用户。 
 1  function Dijkstra(G, w, s)
 2     for each vertex v in V[G]                        // 初始化
 3           d[v] := infinity
 4           previous[v] := undefined
 5     d[s] := 0
 6     S := empty set
 7     Q := set of all vertices
 8     while Q is not an empty set                      // Dijkstra演算法主體
 9           u := Extract_Min(Q)
10           S := S union {u}
11           for each edge (u,v) outgoing from u
12                  if d[v] > d[u] + w(u,v)             // 拓展边(u,v)
13                        d[v] := d[u] + w(u,v)
14                        previous[v] := u
如果我们只对在 s 和 t 之间寻找一条最短路径的话,我们可以在第9行添加条件如果满足 u = t 的话终止程序。现在我们可以通过迭代来回溯出 s 到 t 的最短路径:
1 s := empty sequence
2 u := t
3 while defined u                                        
4       insert u to the beginning of S
5       u := previous[u]
现在序列 S 就是从 s 到 t 的最短路径的顶点集.
 
Dijkstra 算法的实现二(算法导论):
DIJKSTRA(G, w, s)
1  INITIALIZE-SINGLE-SOURCE(G, s)
2  S ← Ø
3  Q ← V[G]                                 //V*O(1)
4  while Q ≠ Ø
5      do u ← EXTRACT-MIN(Q)     //EXTRACT-MIN,V*O(V),V*O(lgV)
6         S ← S ∪{u}
7         for each vertex v ∈ Adj[u]
8             do RELAX(u, v, w)       //松弛技术,E*O(1),E*O(lgV)。
 
     因为Dijkstra算法总是在V-S中选择“最轻”或“最近”的顶点插入到集合S中,所以我们说它使用了贪心策略。 此Dijkstra 算法的最初的时间复杂度为O(V*V+E),源点可达的话,O(V*lgV+E*lgV)=>O(E*lgV)当是稀疏图的情况时,E=V*V/lgV,算法的时间复杂度可为O(V^2)。但我们知道,若是斐波那契堆实现优先队列的话,算法时间复杂度,则为O(V*lgV + E)
 
 

Dijkstra 算法初探的更多相关文章

  1. 经典算法研究系列:二、Dijkstra 算法初探

    July   二零一一年一月 本文主要参考:算法导论 第二版.维基百科. 一.Dijkstra 算法的介绍 Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),算法解决的是有向图中单个源点到 ...

  2. 图论基础之Dijkstra算法的初探

         图论,顾名思义就是有图有论.        图:由点"Vertex"和边"Edge "组成,且图分为有向图和无向图(本文讨论有向图),之前做毕业设计的 ...

  3. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  4. Dijkstra算法优先队列实现与Bellman_Ford队列实现的理解

    /* Dijkstra算法用优先队列来实现,实现了每一条边最多遍历一次. 要知道,我们从队列头部找到的都是到 已经"建好树"的最短距离以及该节点编号, 并由该节点去更新 树根 到其 ...

  5. 关于dijkstra算法的一点理解

    最近在准备ccf,各种补算法,图的算法基本差不多看了一遍.今天看的是Dijkstra算法,这个算法有点难理解,如果不深入想的话想要搞明白还是不容易的.弄了一个晚自习,先看书大致明白了原理,就根据书上的 ...

  6. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  7. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

  8. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  9. 最短路问题Dijkstra算法

    Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先 ...

随机推荐

  1. SAM I AM UVA - 11419 最小点集覆盖 要输出具体覆盖的行和列。

    /** 题目:SAM I AM UVA - 11419 链接:https://vjudge.net/problem/UVA-11419 题意:给定n*n的矩阵,'X'表示障碍物,'.'表示空格;你有一 ...

  2. Hive学习笔记——基本配置及测试

    1.什么是Hive Hive 是建立在 Hadoop上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储.查询和分析存储在Hadoop中的大规模数据的机 ...

  3. 【Java】对文件或文件夹进行重命名

    在Java中,对文件或文件夹进行重命名是很简单的,因为Java的File类已经封装好renameTo的方法. 修改文件或者文件夹的名字都使用这个方法.例如如下的程序: import java.io.* ...

  4. 《Windows游戏编程大师技巧》学习笔记——关于创建显示表面

    1.如你所知,显示在屏幕上的图像仅仅只是是以某种格式存储在内存中的有色像素组成的矩阵.或是调色板化的或是RGB模式的.在不论什么一种情况下.要想做点什么你都必须知道如何绘制图到内存中,然而Direct ...

  5. wireshark in text mode: tshark

    tshark -i <interface> -w "output.data" 抓到的数据可用wireshark打开查看.

  6. php源码,php网站源码,php源码下载

    网址:http://www.aspku.com/php/ 有时间,可以研究研究.

  7. 获取WPF的DataGrid控件中,是否存在没有通过错误验证的Cell

     /// <summary>         /// 获取DataGrid的所有行是否存在验证错误.         /// </summary>         /// &l ...

  8. asp.net session丢失的解决方法小结

    现在我就把原因和解决办法写出来. ASP.NET Session丢失原因: 由于Asp.net程序是默认配置,所以Web.Config文件中关于Session的设定如下: < sessionSt ...

  9. Laravel5.1 模型 --多态关联

    什么是多态关联? 一个例子你就明白了:好比如说评论 它可以属于视频类 也可以属于文章类,当有个需求是 从评论表中取到视频类的数据,这就需要用到多态关联了. 简单的一句话总结:一张表对应两张表. 1 实 ...

  10. django用户认证系统——拓展 User 模型2

    Django 用户认证系统提供了一个内置的 User 对象,用于记录用户的用户名,密码等个人信息.对于 Django 内置的 User 模型, 仅包含以下一些主要的属性: username,即用户名 ...