传送门

Description

Input

第一行为一个整数T代表数据组数,之后T行每行一个数n代表要被分解的数

Output

对于每个n输出一行,为方案个数

Sample Input


Sample Output


Hint

t<=100,n<=23768。

Solution

  dp方程转移之类显然,唯一需要说的是有关去重的问题。显然需要打一张到maxn的平方表。然后f[i][j]代表i分解为j个平方数的方案数。如题面所说,x=a2+b2与x=b2+a2是同一种方案。既然如此,就不能外层循环第一维度内层循环平方表进行转移,因为这样在枚举了第一种方案后会继续枚举相同的第二种方案。考虑阶段:对于一个数x,它的分解方式可分为两个类,第一种是包含a2的,第二种是不包含a2的。对于这两个类分别枚举转移,则不会产生重复。正确性显然。故正确的枚举顺序是外层为平方表,内层是数字x,第三层是分解个数k。

Code

#include<cstdio>
#define maxn 40000
#define maxk 32769 inline void qr(int &x) {
char ch=getchar();int f=;
while(ch>''||ch<'') {
if(ch=='-') f=-;
ch=getchar();
}
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
x*=f;
return;
} inline int max(const int a,const int b) {if(a>b) return a;else return b;}
inline int min(const int a,const int b) {if(a<b) return a;else return b;}
inline int abs(const int x) {if(x>) return x;else return -x;} inline void swap(int &a,int &b) {
int c=a;a=b;b=c;return;
} const int biao[]={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
int t,frog[maxn][],a; inline int sigma(int a) {return frog[a][]+frog[a][]+frog[a][]+frog[a][];} int main() {
qr(t);
frog[][]=;
for(int i=;i<=;++i) {
for(int j=biao[i];j^maxk;++j) {
for(int k=;k^;++k) frog[j][k]+=frog[j-biao[i]][k-];
}
}
do {
a=;qr(a);printf("%d\n",sigma(a));
} while(--t);
return ;
}

Summary

  对于需要去重的方案个数DP,可以考虑将一个状态分解为包括一个元素的状态和不包括一个元素的状态,以被包括的元素做阶段进行转移,则不存在重复问题。

【DP】【P1586】四方定理的更多相关文章

  1. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  2. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  3. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  4. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. 【Luogu】P1586四方定理(DP)

    题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...

  6. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  7. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  8. 四方定理(递归) --java

    四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...

  9. java实现第二届蓝桥杯四方定理

    四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...

随机推荐

  1. ortp打印日志

    //向字符串中打印数据 static char* ms_strdup_vprintf(const char *fmt, va_list ap) { ; char *p,*np; #ifndef WIN ...

  2. 运用GamePlayKit的GKEntity及GKComponent 的iOS游戏开发实例

    GameplayKit是一个面向对象的框架,为构建游戏提供基础工具和技术. GameplayKit包含用于设计具有功能性,可重用架构的游戏的工具,以及用于构建和增强诸如角色移动和对手行为的游戏玩法特征 ...

  3. Spring Cloud(六):Hystrix 监控数据聚合 Turbine【Finchley 版】

    Spring Cloud(六):Hystrix 监控数据聚合 Turbine[Finchley 版]  发表于 2018-04-17 |  更新于 2018-05-07 |  上一篇我们介绍了使用 H ...

  4. Elasticsearch 排序插件的开发

    直接观察到的几个问题 简单expression脚本的执行效率 > java 插件,10000条数据可以测试出1ms左右的差距. Es会不断调用newScript来创建"足够多" ...

  5. 图的遍历——DFS(邻接矩阵)

    递归 + 标记 一个连通图只要DFS一次,即可打印所有的点. #include <iostream> #include <cstdio> #include <cstdli ...

  6. android项目中导入actionbarsherlock 需要注意的地方

    1,在导入actionbarsherlock 这个library时,如果一直报" Invalid Project Description" ;  解决办法:  android中li ...

  7. lintcode-153-数字组合 II

    153-数字组合 II 给出一组候选数字(C)和目标数字(T),找出C中所有的组合,使组合中数字的和为T.C中每个数字在每个组合中只能使用一次. 注意事项 所有的数字(包括目标数字)均为正整数. 元素 ...

  8. 【week6】用户数

    小组名称:nice! 小组成员:李权 于淼 杨柳 刘芳芳 项目内容:约跑app alpha发布48小时以后用户数如何,是否达到预期目标,为什么,是否需要改进,如何改进(或理性估算). 首先我们的app ...

  9. 导入导出SQL数据库

    在需要导出的数据库名上右键,选择转储SQL-数据和结构 在需要导入的连接中新建相同名称的数据库,右键选择运行SQL文件,即可将数据库数据转储到新的数据库中

  10. MySQL event调度

    基本命令 //查看事件调度是否开启 show variables like '%event_scheduler%'; //开启事件调度 SET GLOBAL event_scheduler = ON; ...