【Learning】min-max容斥以及推广

min-max容斥

就是max(a,b)=min(a)+min(b)-min(a,b)

max(a,b,c)=a+b+c-min(a,b)-min(a,c)-min(b,c)+min(a,b,c)

....

为什么这样做?

有的时候min要好算很多

期望的线性

所以可以直接套期望

然后例题:

[HAOI2015]按位或

[HAOI2015]按位或

推广

from:在Ta的博客查看

max_k(S)表示S中第k大

依然可以套期望:

luoguP4707 重返现世

[学习笔记]min-max容斥的更多相关文章

  1. 【学习笔记】Min-max 容斥

    经常和概率期望题相结合. 对于全序集合 \(S\),有: \[\max S=\sum\limits_{T\subseteq S,T\not=\varnothing}(-1)^{\vert T\vert ...

  2. 快速沃尔什变换 (FWT)学习笔记

    证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...

  3. min-max 容斥

    $\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...

  4. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

  5. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  6. [总结] Min-Max容斥学习笔记

    min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...

  7. MinMax 容斥 学习笔记

    基本形式 \[ \max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T) \] 证明 不提供数学证明. 简要讲一下抽象 ...

  8. $Min\_25$筛学习笔记

    \(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...

  9. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

随机推荐

  1. APP功能性测试-2

    安装与卸载 应用是否可以在不同的安卓版本上安装(过低不能适配) 安装后是否可以正常运行 安装空间不足时是否有相应提示 如果应用需要通过网络验证之类的安装,需要测试一下断网情况下是否有相应提示 安装过程 ...

  2. 【shell 练习4】编写Shell用户管理脚本(二)

    一.创建.删除.查看用户,随机生成八位数密码 #!/bin/bash #Author:yanglt #!/bin/bash #Author:yanglt #Blog:https://www.cnblo ...

  3. POJ 1679 The Unique MST(最小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  4. 关于set和get机制的整理

    首先这是es5新增的:定义是设置和获取对象属性时候出发的方法,属于修饰器: 犀牛书例子: function test(n){ return { get count(){ return n }, set ...

  5. 关于localStorage的实际应用

    在客户端存储数据 HTML5 提供了两种在客户端存储数据的新方法: localStorage - 没有时间限制的数据存储 sessionStorage - 针对一个 session 的数据存储 之前, ...

  6. coding.net 版本控制

    这是版本测试的所有内容,其中用到了  git 和coding的远程连接. 代码及版本控制 git地址:https://git.coding.net/tianjiping/11111.git

  7. Unity3D 入门 - 工作区域介绍 与 入门示例

    一. 工作区域详解 1. Scence视图 (场景设计面板) scence视图简介 : 展示创建的游戏对象, 可以对所有的游戏对象进行 移动, 操作 和 放置; -- 示例 : 创建一个球体, 控制摄 ...

  8. alpha-4

    前言 失心疯病源4 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 19:00~21:50 利用背景相减法完成背景构建与更新模块,查找关于blob更多的论文资 ...

  9. ACM 第五天

    匈牙利算法(二分图匹配) C - Courses Consider a group of N students and P courses. Each student visits zero, one ...

  10. iOS开发实现UIView随着子控件的高度的变化而变化

    例子 其实看完上面的叙述,你会思考,到底什么情况下,一个UIView需要只设置坐标不设置大小呢?其实这种场景相当普遍.比如,我们常常会碰到,一个View中有两个Label,两个Label的高度均和内容 ...