UVA.11300 Spreading the Wealth (思维题 中位数模型)
UVA.11300 Spreading the Wealth (思维题)
题意分析
现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人手中的金币个数相等,并求出转移金币的最小个数。保证(Σa[i])/n为整数。
第一眼没有思绪,这种推导方式还是第一次见到。
设ai为第i个人初始金币数量,xi为第i个人转移给i-1个人金币的数量(i为1表示转移给第n个人),(Σa[i])/n = m。
有了上述的基础,可以写出每个人的金币表达式:
即每个人最终的金币数量 = 他的初始化数量-转移走的数量+转移来的数量
a1 - x1 + x2 = m
a2 - x2 + x3 = m
a3 - x3 + x4 = m
……
an - xn + x1 = m
可以写出n个式子,但是这n个式子中只有n-1个有用,因为任意一个式子都可以由剩下的n-1个式子推出。读者可以一试:将1至n-1个式子叠加,可以得到第n个式子。
于是我们要想办法利用这n-1个式子,关键就是:转换成单变量。
我们此处都转换成以x1为变量的式子,即用x1表示xi(i≠1):
x2 = m-a1+x1
x3 = m-a2+x2 = m-a2+m-a1+x1 = 2m-a2-a1+x1
x4 = m-a3+x3 = m-a3+2m-a2-a1+x1 = 3m-a3-a2-a1+x1
……
xn = (n-1)m - Σai( 1<=i<=(n-1) ) + x1
再由于n,m,ai均为常数,上述xi的表达式变量均为x1,但是这样依旧不够,仍旧需要转化成中位数模型
先抛开原题,考虑这样一个问题:
数轴上有n个点,现在求到这n个点的距离和最小的点在哪里。答案就是这些点坐标的中位数。证明笔者就不给出了,可以参考大白书,有兴趣的读者可以一试。
回到原题,我们将xi的表达式改写:
x1 = x1 - 0
x2 = x1 -(a1-m)
x3 = x1 -(a2+a1-2m)
x4 = x1 -(a3+a2+a1-3m)
……
别忘了我们xi表达的是金币转移的数量,即为正数,故所求需要加绝对值,那么 :
|x1| = |x1 - 0|
|x2| = |x1 -(a1-m)|
|x3| = |x1 -(a2+a1-2m)|
|x4| = |x1 -(a3+a2+a1-3m)|
这么一写,是不是就是上面说的中位数的模型了,其中0,(a1-m),(a2+a1-2m),(a3+a2+a1-3m)……不妨看成是数轴上一系列的点。x1即为需要求出的中位数。 求出中位数后,带入上式累加,即可求出最终的答案。
代码总览
#include <cstdio>
#include <algorithm>
#include <cmath>
#define nmax 1000005
#define ll long long
using namespace std;
ll a[nmax],c[nmax];
int main()
{
int n;
while(scanf("%d",&n) != EOF){
ll sum = 0;
for(int i = 0; i<n; ++i){scanf("%d",&a[i]);sum+=a[i];}
ll t = sum/n;c[0] = 0;
//ci 为对应的0,(a1-m),(a2+a1-2m),(a3+a2+a1-3m)……
for(int i = 1 ;i<n; ++i)
c[i] = c[i-1] + a[i] - t;
sort(c,c+n);
//pos为中位数
ll pos = c[n/2],ans = 0;
for(int i = 0; i<n;++i) ans+=fabs(pos-c[i]);
printf("%lld\n",ans);
}
return 0;
}
UVA.11300 Spreading the Wealth (思维题 中位数模型)的更多相关文章
- 数学/思维 UVA 11300 Spreading the Wealth
题目传送门 /* 假设x1为1号给n号的金币数(逆时针),下面类似 a[1] - x1 + x2 = m(平均数) 得x2 = x1 + m - a[1] = x1 - c1; //规定c1 = a[ ...
- UVa 11300 Spreading the Wealth(有钱同使)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...
- uva 11300 - Spreading the Wealth(数论)
题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...
- UVA - 11300 Spreading the Wealth(数学题)
UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金 ...
- Uva 11300 Spreading the Wealth(递推,中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
- UVA 11300 Spreading the Wealth (数学推导 中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
- Math - Uva 11300 Spreading the Wealth
Spreading the Wealth Problem's Link ---------------------------------------------------------------- ...
- [ACM_几何] UVA 11300 Spreading the Wealth [分金币 左右给 最终相等 方程组 中位数]
Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to ...
- 【思维】UVA 11300 Spreading the Wealth
题目大意 vjudge链接 有n个人围圆桌而坐,每个人有Ai个金币,每个人可以给左右相邻的人一些金币. 若使得最终所有人金币数相等,求最小金币转移数. 数据范围 n<1000001 样例输入 3 ...
随机推荐
- 创建并运行第一个Django项目
首先, 添加Django模块: 在CMD命令行输入 python -m django --version 查看Django版本: 创建第一个Django项目: 整个工程的目录结构: mysite目录是 ...
- tpo-09 C2 Return a sociology book
check out 在library里有借书的意思 第 1 段 1.Listen to a conversation between a student and a librarian employe ...
- 游戏AI之群组行为
群组行为指的是多个对象组队同时进行的情况.每个boid需满足分离,队列,凝聚三个基本的规则. 分离:群组中的每个个体都与相邻的个体保持一定的距离. 队列:群组以相同的速度,向相同的方向移动. 凝聚:与 ...
- flume 整合 kafka
flume 整合 kafka: flume:高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统. kafka:分布式的流数据平台. flume 采集业务日志,发送到kafka 一. ...
- SecureCRT 注册
http://download.csdn.net/download/xia2011214228/9952983 1.下载后解压到安装目录 2.输入自己要注册的:name company 后genera ...
- python切片技巧
写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz” for x in range(101): p ...
- 小程序页面的四种文件(JSON、WXML、WXSS、JS)加载顺序
一个小程序页面由四种文件组成: 1)json 页面配置文件 2)js 页面逻辑文件(必需) 3)wxml 页面结构文件(必需) 4)wxss 页面样式文件 这四个文件的加载顺序: 第一步: 加载页面j ...
- 记一次Log4j2日志无法输出的 心酸史
问题描述:部分日志无法输出到日志文件中. 项目中的代码: @Resource private ConfigInfo configInfo; private static final Logger lo ...
- Linux中常用的关机和重新启动命令
hutdown.halt.reboot以及init,它们都可以达到关机和重新启动的目的,但是每个命令的内部工作过程是不同的,下面将逐一进行介绍. 一.shutdown shutdown命令用于安全关闭 ...
- 软件管理——rpm&dpkg、yum&apt-get
一般来说著名的linux系统基本上分两大类: 1. RedHat系列:Redhat.Centos.Fedora等 2. Debian系列:Debian.Ubuntu等 一.RedHat 系列 ...