BZOJ2654/COGS1764 [2012国家集训队]tree(陈立杰) [生成树,二分]
tree
Description
Input
Output
Sample Input
0 1 1 1
0 1 2 0
Sample Output
Hint
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。
分析:
在大鸡哥的博客里看到的,一开始的分析就是直接一波玄学排序然后暴力Kruskal+一堆判断,然后自己把自己推翻了。。。
还是看了大鸡哥的博客才懂得。大鸡哥的博客里讲的很清晰了,而且还讲到了COGS上和BZOJ上数据不同的问题。就推荐一下大鸡哥的博客吧。
Code:
//It is made by HolseLee on 1st June 2018
//BZOJ 2654/COGS 1764
#include<bits/stdc++.h>
using namespace std;
const int N=5e4+;
const int M=1e5+;
int n,m,k,fa[N],num,ans;
struct Node{
int from,to,val,c,id;
}edge[M];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline bool cmp(Node a,Node b)
{return a.c==b.c?a.id<b.id:a.c<b.c;}
inline int find(int x)
{return fa[x]==x?x:fa[x]=find(fa[x]);}
inline int check(int ka)
{
for(int i=;i<=m;i++)
edge[i].c=edge[i].val+(edge[i].id^)*ka;
sort(edge+,edge+m+,cmp);
for(int i=;i<n;i++)fa[i]=i;
int cnt=,tot=;num=;
for(int i=;i<=m;i++){
int x=find(edge[i].from);
int y=find(edge[i].to);
if(x!=y){fa[y]=x;tot++;
cnt+=(edge[i].id==?:);
num+=edge[i].c;}
if(tot==n-)break;}
return cnt;
}
int main()
{
freopen("nt2012_tree.in","r",stdin);
freopen("nt2012_tree.out","w",stdout);
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=m;i++){
scanf("%d%d",&edge[i].from,&edge[i].to);
scanf("%d%d",&edge[i].val,&edge[i].id);}
int L=-,R=,mid;
while(L<=R){
mid=(L+R)/;
if(check(mid)>=k)ans=num-k*mid,L=mid+;
else R=mid-;}
printf("%d",ans);return ;
}
BZOJ2654/COGS1764 [2012国家集训队]tree(陈立杰) [生成树,二分]的更多相关文章
- [国家集训队2012]tree(陈立杰)
[国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...
- BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路
BZOJ_2622_[2012国家集训队测试]深入虎穴_最短路 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物 ...
- P1501 [国家集训队]Tree II(LCT)
P1501 [国家集训队]Tree II 看着维护吧2333333 操作和维护区间加.乘线段树挺像的 进行修改操作时不要忘记吧每个点的点权$v[i]$也处理掉 还有就是$51061^2=2607225 ...
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- 【BZOJ2622】[2012国家集训队测试]深入虎穴 次短路
[BZOJ2622][2012国家集训队测试]深入虎穴 Description 虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物,例如“ ...
- [国家集训队2012]tree(陈立杰) 题解(二分+最小生成树)
tree 时间限制: 3 Sec 内存限制: 512 MB 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 输入 第一行V, ...
- [国家集训队]Tree II
嘟嘟嘟 这道题其实还是挺基础的,只不过操作有点多. 区间乘和区间加按线段树的方式想. 那么就先要下放乘标记,再下放加标记.但这两个和反转标记是没有先后顺序的. 对于区间加,sum加的是区间长度\(*\ ...
- 【洛谷 P1501】 [国家集训队]Tree II(LCT)
题目链接 Tree Ⅱ\(=\)[模板]LCT+[模板]线段树2.. 分别维护3个标记,乘的时候要把加法标记也乘上. 还有就是模数的平方刚好爆\(int\),所以开昂赛德\(int\)就可以了. 我把 ...
- 【洛谷1501】[国家集训队] Tree II(LCT维护懒惰标记)
点此看题面 大致题意: 有一棵初始边权全为\(1\)的树,四种操作:将两点间路径边权都加上一个数,删一条边.加一条新边,将两点间路径边权都加上一个数,询问两点间路径权值和. 序列版 这道题有一个序列版 ...
随机推荐
- 函数getopt()及其参数optind -- (转)
getopt被用来解析命令行选项参数 #include <unistd.h> extern char *optarg; //选项的参数指针 extern int ...
- 【Windows使用笔记】Windows科研软件
1 Anaconda Anaconda指的是一个开源的Python发行版本,其包含了conda.Python等180多个科学包及其依赖项.主要是内置有jupyter notebook和jupyter ...
- yocto 离线编译
使用yocto编译一个软件包时,一般会先在本地寻找下载好的源码包,如果不存在则根据配置从网络下载. 添加本地源码包 为了支持离线编译,添加一个包的配置文件后,需要在本地也准备好源码包. 可以先打开网络 ...
- linux非阻塞的socket EAGAIN的错误处理【转】
转自:http://blog.csdn.net/tianmohust/article/details/8691644 版权声明:本文为博主原创文章,未经博主允许不得转载. 在Linux中使用非阻塞的s ...
- Centos_Lvm_Create pv vg lv and mount
re-scan new disks without restarting CentOS re-scan new disks(/dev/sdc): #ls /sys/class/scsi_host/ h ...
- saltstack安装和配置
[root@web9 salt]# vi filetest.sls //ADD file_test: file.managed: - name: /tmp/lulu.com - source: sal ...
- js判断文件格式及大小
//判断照片大小 function getPhotoSize(obj){ photoExt=obj.value.substr(obj.value.lastIndexOf(".&q ...
- 9:django 表单
django自带表单系统,这个表单系统不仅可以定义属性名,还可以自己定义验证,更有自己自带的错误提示系统 这节我们仅仅粗略的来看一下django表单系统的入门运用(具体的实在太多东西,主要是我觉得有很 ...
- spring使用aop需要的jar包,和常见异常
3.0以后spring不再一起发布aop依赖包,需要自己导入: 必须包: 这几个jar包分别为 1.org.springframework.aop-3.1.1.RELEASE 这个是spring的 ...
- POJ 2492 A Bug's Life(带权并查集)
题目链接:http://poj.org/problem?id=2492 题目大意:有n只虫子,m对关系,m行每行有x y两个编号的虫子,告诉你每对x和y都为异性,先说的是对的,如果后面给出关系与前面的 ...