题目传送门;

  首先理解题目,究其本质就是一个最短路问题,而且数据范围贼水,用floyd完全没问题,但是题目有变化,要求出路径边权值与边数之比,这里就可以考虑在把floyd中的二维数组变为三维,f[ i ][ j ][ l ]表示从 i 到 j 经过 l 条边的情况,而且因为是有向图,所以从一点到达另一点经过的边数最多为n-1条(除非数据有问题),做完floyd之后就从1~n-1枚举边数,然后比较得出ans即可,不过要注意,对于f[ s ][ t ][ l ],某些 l 的情况是不存在的,所以别忘了赋inf初值。下面是代码:

#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
int n,m,q;
int dis[][][];
int main()
{
//freopen("path.in","r",stdin);
//freopen("path.out","w",stdout);
scanf("%d%d",&n,&m);
for(int l=;l<=m;l++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j][l]=inf;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(dis[x][y][]>z)
dis[x][y][]=z;
}
for(int l=;l<=m;l++)
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j][l]=min(dis[i][j][l],dis[i][k][l-]+dis[k][j][]);
scanf("%d",&q);
while(q--){
int x,y;
double ans=inf,now=inf;
scanf("%d%d",&x,&y);
for(int l=;l<=n;l++)
{
if(dis[x][y][l]<inf)
now=(double)dis[x][y][l]/(double)l;
ans=min(ans,now);
}
if(ans==inf)printf("OMG!\n");
else printf("%.3lf\n",ans);
}
return ;
}

洛谷P1730最小密度路径的更多相关文章

  1. [洛谷P1730] 最小密度路径

    类型:Floyd 传送门:>Here< 题意:定义一条路径密度 = 该路径长度 / 边数.给出一张$DAG$,现有$Q$次询问,每次给出$X,Y$,问$X,Y$的最小密度路径($N \le ...

  2. 洛谷P1730 最小密度路径(floyd)

    题意 题目链接 Sol zz floyd. 很显然的一个dp方程\(f[i][j][k][l]\)表示从\(i\)到\(j\)经过了\(k\)条边的最小权值 可以证明最优路径的长度一定\(\leqsl ...

  3. Luogu P1730 最小密度路径(最短路径+dp)

    P1730 最小密度路径 题面 题目描述 给出一张有 \(N\) 个点 \(M\) 条边的加权有向无环图,接下来有 \(Q\) 个询问,每个询问包括 \(2\) 个节点 \(X\) 和 \(Y\) , ...

  4. 【洛谷P1730】最小密度路径

    题目大意:给定一个 N 个点,M 条边的有向图,现有 Q 个询问,每次询问 X 到 Y 的最小密度路径是多少.最小密度路径的定义是路径长度除以路径边数. 题解:利用矩阵乘法,可以预处理出从 X 到 Y ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. [Luogu 1730]最小密度路径

    Description 给出一张有N个点M条边的加权有向无环图,接下来有Q个询问,每个询问包括2个节点X和Y,要求算出从X到Y的一条路径,使得密度最小(密度的定义为,路径上边的权值和除以边的数量). ...

  7. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  8. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  9. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

随机推荐

  1. 元类编程-- 实现orm,以django Model为例

    # 需求 import numbers class Field: pass class IntField(Field): # 数据描述符 def __init__(self, db_column, m ...

  2. 从C语言项目谈编程

    很多初学C语言的小伙伴,在学习之初并没有一个大概的概念,学习这门语言需要掌握多少知识点,怎么才算学的差不多? C语言的精髓点在哪? 学到多少东西才能够达到做项目的标准?学习的时候需要注意哪些细节点?疑 ...

  3. windows10安装oracle11g报错ORA-01034、ORA-01078

    ORA-01034表示数据库实例未建立,可以先用管理员账号进入一个空白实例 sqlplus / as sysdba; 如果您当前使用的账号是安装oracle的账号,则不需要账号密码就可以登陆oracl ...

  4. C#编写程序监测某个文件夹内是否有文件进行了增,删,改的动作?

    新建一个Console应用程序,项目名称为“FileSystemWatcher”,Copy代码进,编译后就可以用了.代码如下: using System; using System.Collectio ...

  5. charles & Fiddle

    一.Charles Charles是在Mac下常用的截取网络封包的工具,在做移动端开发时,我们为了调试与服务器端的网络通讯协议,常常需要截取网络封包来分析.Charles通过将自己设置成系统的网络访问 ...

  6. Spring Boot提供的特性

    一.导览 本文主要按以下模块介绍spring Boot(1.3.6.RELEASE)提供的特性. SpringApplication类 外部化配置 Profiles 日志 开发WEB应用 Securi ...

  7. spring项目中web-inf下不能引用页面资源

    1.spring项目结构 2.spring结构说明 web-inf目录是不对外开放的,外部没办法直接访问到(即通过url访问),只有通过映射来访问,如映射一个action或servlet通过服务器端跳 ...

  8. ms17010利用失败解决一则

    没有反弹得到session并且提示如下: [-] 10.0.131.2:445 - Service failed to start, ERROR_CODE: 216 换了一个payload set p ...

  9. Vue组件-组件的属性

    在html中使用元素,会有一些属性,如class,id,还可以绑定事件,自定义组件也是可以的.当在一个组件中,使用了其他自定义组件时,就会利用子组件的属性和事件来和父组件进行数据交流. 比如,子组件需 ...

  10. 設定 gpio 為 讀取用途,需注意的參數

    Schematic 解說 上面的 線路圖, R1 R2 只能有一個被接上, R3 R4 只能有一個被接上, 是使用 gpio 讀取 電壓 判斷為0 或是 1 這時的 gpio 設定,其中一個參數需設為 ...