题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5405

题意: 给你一棵n个节点的树,有点权。

         要求支持两种操作:

    操作1:更改某个节点的权值。

    操作2:给定u,v, 求 Σw[i][j]   i , j 为任意两点且i到j的路径与u到v的路径相交。

解法:

  这是一个大树剖题。 

  容易发现对于一个询问,答案为总点权和的平方 减去 去掉u--v这条链后各个子树的点权和的平方的和。

  开两棵线段树,tag1记录点权和,tag2记录某点的所有轻链子树的点权和的平方的和。

  每次沿着重链往上走时,直接加上这条重链的所有点的tag2和,若有重儿子则直接用tag1计算。由于该条重链必定为其父亲的轻链,故为防止计算重复,还需减去该重链所有点的tag1平方和。

  最后爬到同一颗重链后,还需计算重链上方所有点的贡献。

//HDU 5405

//答案为总点权和的平方 减去 去掉u--v这条链后各个子树的点权和的平方的和。
//T1记录点权和,T2记录某点的所有轻链子树的点权和的平方的和
//每次沿着重链往上走时,直接加上这条重链的所有点的tag2和,若有重儿子则直接用tag1计算。
//由于该条重链必定为其父亲的轻链,故为防止计算重复,还需减去该重链所有点的tag1平方和。
//最后爬到同一颗重链后,还需计算重链上方所有点的贡献。 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e5+5;
const int mod = 1e9+7;
struct Tree{
LL sum[maxn<<2];
void build(){
memset(sum,0,sizeof(sum));
}
void pushup(int rt){
sum[rt] = (sum[rt<<1]+sum[rt<<1|1])%mod;
}
void update(int pos, LL v, int l, int r, int rt){
if(l == r){
sum[rt] += v;
sum[rt] %= mod;
return;
}
int mid = (l+r)>>1;
if(pos <= mid) update(pos, v, l, mid, rt<<1);
else update(pos, v, mid+1, r, rt<<1|1);
pushup(rt);
}
LL query(int L, int R, int l, int r, int rt){
if(L<=l&&r<=R){
return sum[rt];
}
int mid = (l+r)/2;
if(R<=mid) return query(L,R,l,mid,rt<<1)%mod;
else if(L>mid) return query(L,R,mid+1,r,rt<<1|1)%mod;
else return (query(L,mid,l,mid,rt<<1)+query(mid+1,R,mid+1,r,rt<<1|1))%mod;
}
}T1, T2;
int head[maxn],n, m, edgecnt, dfsclk;
struct edge{
int to,next;
}E[maxn*2];
int sz[maxn], top[maxn], son[maxn], dep[maxn];
int fa[maxn], tid[maxn], val[maxn];
void init(){
edgecnt = 0;
dfsclk = 0;
memset(head, -1, sizeof(head));
memset(son, -1, sizeof(son));
}
void addedge(int u, int v){
E[edgecnt].to = v, E[edgecnt].next = head[u], head[u] = edgecnt++;
}
void dfs1(int u, int father, int d){
dep[u] = d;
fa[u] = father;
sz[u] = 1;
for(int i = head[u]; ~i; i=E[i].next){
int v = E[i].to;
if(v == father) continue;
dfs1(v, u, d+1);
sz[u] += sz[v];
if(son[u] == -1 || sz[v]>sz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp)
{
top[u] = tp;
tid[u] = ++dfsclk;
if(son[u] == -1) return;
dfs2(son[u], tp);
for(int i = head[u]; ~i; i=E[i].next){
int v = E[i].to;
if(v!=son[u]&&v!=fa[u])
dfs2(v,v);
}
}
inline LL sqr(int x){
return (LL)x*x;
}
void update(int x, int v){
int u = top[x];
while(fa[u]){
LL sum = T1.query(tid[u], tid[u]+sz[u]-1, 1, n, 1);
T2.update(tid[fa[u]], ((sqr(val[x]-v)%mod)%mod-(LL)sum*2*(val[x]-v)%mod)%mod, 1, n, 1);
u = top[fa[u]];
}
T1.update(tid[x], v-val[x], 1, n, 1);
val[x] = v;
}
LL query(int x, int y){
LL ret = 0;
while(top[x] != top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ret += T2.query(tid[top[x]], tid[x], 1, n, 1);
ret %= mod;
if(son[x]!=-1){
LL sum = T1.query(tid[son[x]], tid[son[x]]+sz[son[x]]-1, 1, n, 1);
ret = ret + sum*sum%mod;
ret %= mod;
}
LL sum = T1.query(tid[top[x]], tid[top[x]]+sz[top[x]]-1, 1, n, 1);
ret = (ret - sum*sum%mod + mod)%mod;
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
ret += T2.query(tid[x], tid[y], 1, n, 1);
ret %= mod;
if(son[y]!=-1){
LL sum = T1.query(tid[son[y]], tid[son[y]]+sz[son[y]]-1, 1, n, 1);
ret = (ret + sum*sum%mod)%mod;
}
if(fa[x]){
LL sum = T1.query(1, n, 1, n, 1) - T1.query(tid[x], tid[x]+sz[x]-1, 1, n, 1);
ret = (ret+sum*sum%mod)%mod;
}
return ret;
}
int main()
{
while(~scanf("%d %d", &n,&m))
{
init();
T1.build();
T2.build();
for(int i=1; i<=n; i++) scanf("%d", &val[i]);
for(int i=1; i<n; i++){
int u, v;
scanf("%d %d", &u,&v);
addedge(u, v);
addedge(v, u);
}
dfs1(1, 0, 0);
dfs2(1, 1);
for(int i=1; i<=n; i++){
int x = val[i];
val[i] = 0;
update(i, x);
}
while(m--)
{
int op, x, y;
scanf("%d %d %d", &op,&x,&y);
if(op == 1){
update(x, y);
}
else{
LL sum = T1.query(tid[1], tid[1]+sz[1]-1, 1, n, 1);
sum = sum*sum;
sum = sum-query(x, y);
sum = sum%mod;
if(sum<0) sum+=mod;
printf("%lld\n", sum);
}
}
}
return 0;
}

2015多校第9场 HDU 5405 Sometimes Naive 树链剖分的更多相关文章

  1. HDU 5405 Sometimes Naive 树链剖分+bit*****

    Sometimes Naive Problem Description   Rhason Cheung had a naive problem, and asked Teacher Mai for h ...

  2. HDU 5029 Relief grain --树链剖分第一题

    题意:给一棵树,每次给两个节点间的所有节点发放第k种东西,问最后每个节点拿到的最多的东西是哪种. 解法:解决树的路径上的修改查询问题一般用到的是树链剖分+线段树,以前不会写,后来学了一下树链剖分,感觉 ...

  3. hdu 5029 Relief grain(树链剖分+线段树)

    题目链接:hdu 5029 Relief grain 题目大意:给定一棵树,然后每次操作在uv路径上为每一个节点加入一个数w,最后输出每一个节点个数最多的那个数. 解题思路:由于是在树的路径上做操作, ...

  4. HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 4366 Successor(树链剖分+zkw线段树+扫描线)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4366 [题目大意] 有一个公司,每个员工都有一个上司,所有的人呈树状关系,现在给出每个人的忠诚值和 ...

  6. HDU 5044 Tree(树链剖分)

    HDU 5044 Tree field=problem&key=2014+ACM%2FICPC+Asia+Regional+Shanghai+Online&source=1&s ...

  7. 2015多校第6场 HDU 5354 Bipartite Graph CDQ,并查集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5354 题意:求删去每个点后图是否存在奇环(n,m<=1e5) 解法:很经典的套路,和这题一样:h ...

  8. 2015多校第6场 HDU 5361 并查集,最短路

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5361 题意:有n个点1-n, 每个点到相邻点的距离是1,然后每个点可以通过花费c[i]的钱从i点走到距 ...

  9. 2015多校第6场 HDU 5355 Cake 贪心,暴力DFS

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5355 题意:给你n个尺寸大小分别为1,2,3,…,n的蛋糕,要求你分成m份,要求每份中所有蛋糕的大小之 ...

随机推荐

  1. BZOJ4755 JSOI2016扭动的回文串(二分答案+哈希)

    显然答案应该是由单串以某位置为中心的极长回文串继续在另一个串里拓展得到的.枚举中间位置二分答案,哈希判断即可.注意考虑清楚怎么处理偶回文,比如像manacher一样加分隔符. #include< ...

  2. nginx日志切割总结

    Nginx日志切割   方法1(脚本+定时执行): #step1:加脚本 cut_nginx_log.sh,主进程把USR1信号发给worker,worker接到这个信号后,会重新打开日志文件 #!/ ...

  3. Python列表去重的三种方法

    1. 列表去重 li = [] for item in my_list: if item not in li: li.append(item) 2.集合去重 list(set(my_list)) 3. ...

  4. [luogu2783] 有机化学之神偶尔会做作弊

    题目链接 洛谷. Solution 边双缩点然后\(lca\)跑\(dis\)就好了. 注意这里是边双,不知道为啥所有题解都说的是点双. 边双是定义在点上的,即每个点只属于一个边双:点双是定义在边上的 ...

  5. bzoj1211: [HNOI2004]树的计数(purfer编码)

    BZOJ1005的弱化版,不想写高精度就可以写这题嘿嘿嘿 purfer编码如何生成?每次将字典序最小的叶子节点删去并将其相连的点加入序列中,直到树上剩下两个节点,所以一棵有n个节点的树purfer编码 ...

  6. 【简单算法】37.Shuffle an Array

    题目: 打乱一个没有重复元素的数组. 示例: // 以数字集合 1, 2 和 3 初始化数组. ,,}; Solution solution = new Solution(nums); // 打乱数组 ...

  7. MyBatis子查询

    一.父查询BaseChildResultMap: <?xml version="1.0" encoding="UTF-8" ?> <!DOCT ...

  8. Good Bye 2015 C

    C. New Year and Domino time limit per test 3 seconds memory limit per test 256 megabytes input stand ...

  9. VC使用sqlite

    SQLite可以到官方站点(http://www.sqlite.org/download.html)下载:Linux,Mac OS X, Windows下的已编译文件以及源代码.帮助文档. SQLit ...

  10. bzoj1529 [POI2005]ska Piggy banks 并查集

    [POI2005]ska Piggy banks Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1508  Solved: 763[Submit][Sta ...