bzoj 4753 最佳团体
Written with StackEdit.
Description
\(JSOI\)信息学代表队一共有N名候选人,这些候选人从\(1\)到\(N\)编号。方便起见,\(JYY\)的编号是\(0\)号。每个候选人都由一位编号比他小的候选人\(R_i\)推荐。如果\(R_i=0\)则说明这个候选人是\(JYY\)自己看上的。为了保证团队的和谐,\(JYY\)需要保证,如果招募了候选人\(i\),那么候选人\(R_i\)"也一定需要在团队中。当然了,\(JYY\)自己总是在团队里的。每一个候选人都有一个战斗值P\(_i\)",也有一个招募费用\(S_i\)"。\(JYY\)希望招募\(K\)个候选人(\(JYY\)自己不算),组成一个性价比最高的团队。也就是,这\(K\)个被\(JYY\)选择的候选人的总战斗值与总招募总费用的比值最大。
Input
输入一行包含两个正整数\(K\)和\(N\)。
接下来\(N\)行,其中第\(i\)行包含\(3\)个整数\(S_i,P_i,R_i\)表示候选人i的招募费用,战斗值和推荐人编号。
对于\(100\%\)的数据满足\(1≤K≤N≤2500,0<S_i,P_i≤10^4,0≤R_i<i.\)
Output
输出一行一个实数,表示最佳比值。答案保留三位小数。
Sample Input
1 2
1000 1 0
1 1000 1
Sample Output
0.001
Solution
- \(0/1\)分数规划与树形背包的结合.
- 目标是最大化\(\sum a_i/\sum b_i\).
- 考虑二分答案\(x\),若该答案合法,则\(\sum a_i/\sum b_i\geq x\).
- 移项,有\(\sum a_i-x\cdot \sum b_i\geq 0\).
- 令每个物品的权值为\(a_i-x\cdot b_i\),则转化为一般的最大化总权值的树形背包.得出最大总权值后,若其非负,则说明\(x\)合法,否则不合法.
#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
typedef long long LoveLive;
const double eps=1e-5;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int MAXN=2510;
int a[MAXN],b[MAXN],Fa[MAXN];//p,s,r
int cnt=0,head[MAXN],to[MAXN<<1],nx[MAXN<<1];
double w[MAXN],f[MAXN][MAXN];
int sons[MAXN],siz[MAXN];
inline void add(int u,int v)
{
++cnt;
to[cnt]=v;
nx[cnt]=head[u];
head[u]=cnt;
}
int n,k;
void dfs(int u)
{
siz[u]=1;
f[u][0]=0;
if(sons[u]==0)
{
f[u][1]=w[u];
return;
}
for(int i=head[u];i;i=nx[i])
{
int v=to[i];
dfs(v);
int lim=min(k,siz[u]);
for(int j=lim;j>=0;--j)
{
for(int p=0;p<=siz[v];++p)
{
if(j+p>k)
break;
f[u][j+p]=max(f[u][j+p],f[u][j]+f[v][p]);
}
}
siz[u]+=siz[v];
}
for(int i=k;i>=0;--i)
{
if(i>=1)
f[u][i]=f[u][i-1]+w[u];
else
f[u][i]=0;
}
}
int check(double x)
{
for(int i=1;i<=n;++i)
w[i]=1.0*a[i]-1.0*b[i]*x;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[i][j]=-inf;
dfs(1);
if(f[1][k]>-eps)
return 1;
return 0;
}
int main()
{
k=read(),n=read();
++n,++k;
for(int i=2;i<=n;++i)
{
b[i]=read();
a[i]=read();
Fa[i]=read();
++Fa[i];
++sons[Fa[i]];
add(Fa[i],i);
}
double L=0,R=1e4,ans=0;
while(R-L>eps)
{
double mid=(L+R)/2;
if(check(mid))
{
ans=mid;
L=mid;
}
else
R=mid;
}
printf("%.3f\n",ans);
return 0;
}
bzoj 4753 最佳团体的更多相关文章
- bzoj 4753 最佳团体 —— 01分数规划+树形背包
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 注意赋初值为 -inf: eps 设为 1e-3 会 WA ... 代码如下: #in ...
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- 【BZOJ4753】最佳团体(分数规划,动态规划)
[BZOJ4753]最佳团体(分数规划,动态规划) 题面 BZOJ Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一 ...
- [JSOI 2016] 最佳团体(树形背包+01分数规划)
4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2003 Solved: 790[Submit][Statu ...
- BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...
- loj#2071. 「JSOI2016」最佳团体
题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #inclu ...
- BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划
BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...
- [JSOI2016]最佳团体 DFS序/树形DP
题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...
- bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 0/1分数规划裸题. #include<iostream> #includ ...
随机推荐
- form前台提交List<Object>对象以及后台处理
页面: <form method="post" action="test.do" id="form"> <input ty ...
- Percona-Server-5.7.16 启动错误
基于:percona-server-5.7.16 启动报错: [root@monitor mysql]# ./bin/mysqld_safe --defaults-file=/data/config ...
- 20145217《网络对抗》 Web安全基础实践
20145217<网络对抗> Web安全基础实践 一.实践任务 本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 二.实验后回答问题 (1)SQL注入攻击原理,如 ...
- 20145222 黄亚奇 《网络对抗》Exp8 Web基础
20145222 黄亚奇 <网络对抗>Exp8 Web基础 实践具体要求 (1).Web前端HTML(1分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法 ...
- tinyxml优化之一
原文链接:http://www.cnblogs.com/zouzf/p/4154569.html 最近在搞XML解析优化,公司引擎用了tinyxml1和tinyxml2两个XML库,后者的效率比前者高 ...
- 简单介绍java Enumeration(转)
Enumeration接口 Enumeration接口本身不是一个数据结构.但是,对其他数据结构非常重要. Enumeration接口定义了从一个数据结构得到连续数据的手段.例如,Enumeratio ...
- fabric动态获取远程目录列表
#!/usr/bin/pythonfrom fabric.api import *env.user='root'env.hosts=['172.10.224.183','172.10.224.132' ...
- Hibernate常见优化策略
① 制定合理的缓存策略(二级缓存.查询缓存). ② 采用合理的Session管理机制. ③ 尽量使用延迟加载特性. ④ 设定合理的批处理参数. ⑤ 如果可以,选用UUID作为主键生成器. ⑥ 如果可以 ...
- Ubuntu 1210怎么获得root权限登录
Ubuntu 12.10 怎么用Root 登录?以下是Ubuntu 12.10 启用Root 登录的方法吗,希望对大家有些帮助吧! 方法如下: 1.先设定一个 Root 密码 sudo passwd ...
- 测绘类SCI
GeoInformatica(国际地理信息系统计算机科学进展杂志)美国International Journal of Geographical Information Science(国际地理信息科 ...