2734: [HNOI2012]集合选数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 560  Solved: 321
[Submit][Status]

Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

Input

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

Output

仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。

Sample Input

4

Sample Output

8

【样例解释】

 
有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。
 
  神奇的排列组合问题,其中分成多个独立子问题,分别转化为矩阵,最有用乘法原理合并的思想可以用在很多题里面。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 100010
#define MOD 1000000001
typedef long long qword;
int gcd(int x,int y)
{
return (x%y==)?y:gcd(y,x%y);
}
int pow(int x,int y)
{
int ret=;
while (y)
{
if (y&)ret*=x;
x*=x;
y>>=;
}
return ret;
}
qword pow_mod(qword x,int y)
{
qword ret=;
while(y)
{
if (y&)ret=ret*x%MOD;
x=x*x%MOD;
y>>=;
}
return ret;
}
int dp[][<<];
int ff[MAXN];
int main()
{
//freopen("input.txt","r",stdin);
int n,x,y;
scanf("%d",&n);
int i,j,k,ii;
qword ans=;
memset(ff,-,sizeof(ff));
for (i=;i<;i++)
{
if ((<<i)<MAXN)
ff[(<<i)]=i;
}
for (i=;i<MAXN;i++)
if (ff[i]==-)ff[i]=ff[i-];
for (ii=;ii<=n;ii++)
{
if (ii%== || ii%==)continue;
int l,r,mid;
l=,r=;
while (l+<r)
{
mid=(l+r)>>;
if ((qword)ii*pow(,mid)<=n)
l=mid;
else
r=mid;
}
memset(dp,,sizeof(dp));
dp[][]=;
x=ii;
for (i=;ii*(<<i>>)<=n;i++)//log(n)
{
for (j=;j<(<<r);j++)//2^(log3(n))
{
if (!dp[i-][j])continue;
for (k=;k<(<<r);k++)
{
if (j&k || (k&(k<<)))continue;
if ((qword)x*pow(,ff[k])>n)break;
dp[i][k]=(dp[i][k]+dp[i-][j])%MOD;
}
}
x*=;
}
qword res=;
for (j=;j<(<<r);j++)
{
res=(res+dp[i-][j])%MOD;
}
ans=ans*res%MOD;
}
printf("%lld\n",ans);
}
 
 

bzoj 2734: [HNOI2012]集合选数 状压DP的更多相关文章

  1. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  2. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  3. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  4. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  5. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  6. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  7. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  8. BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]

    传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...

  9. bzoj 2734: [HNOI2012]集合选数

    题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...

随机推荐

  1. OpenFileDialog

    打开一个文件         private void button1_Click(object sender, EventArgs e)         {             openFile ...

  2. MFC程序实现给对话框加入�背景图片

    1.插入一个Bitmap的资源图片,如果资源名称为:IDC_BITMAP1 2.在CXXXDialog::OnPaint()中实现: void CMyDialogDlg::OnPaint() { if ...

  3. xcode 4 安装cocos2d-x 2.1.4

    http://blog.csdn.net/xiaominghimi/article/details/6937685 从今天开始Himi将陆续更新cocos2d-X的博文,毕竟cocos2d-X的跨平台 ...

  4. Chapter 6 - How to Play Music and Sound Effect

    In this chapter, we would add background music to the game and play sound effect when the hero fires ...

  5. jquery easyui easyui-treegrid 使用异步加载数据

    jquery easyui easyui-treegrid 使用异步加载数据 jquery easyui easyui-treegrid 异步请求 >>>>>>&g ...

  6. quartz.net 基于数据库的简单实现

    前面简单学习了通过XML配置或者内存指定的方式实现调度任务.但此用法实战用途较小,企业上多需要分布式集群的方式.quart团队也考虑到了这点,于是有了我们今天要学习的.基于数据库实现分布式. Name ...

  7. PHP获得header头进行分析

    学web的人都知道,要深刻的理解就一定要对HTTP协议有深刻的理解,这样你才能理解整个运行的流程,有些功能你才能理解应该 如何去实现,比如:仿盗链啊,定义IP后切换页面语种的版本啊,等等, 这里就来对 ...

  8. Animating Layout Changes(展开收起)

    原文地址:https://developer.android.com/training/animation/layout.html#add (1)设置布局文件: <LinearLayout an ...

  9. phpMyAdmin教程 之 创建新用户/导入/导出数据库

    盗用了被人的教程. 需要看就点击进去吧.复制过来实在是过意不去 http://www.wpdaxue.com/phpmyadmin-import-export-database.html

  10. Object To Enum

    public static T ObjectToEnum<T>(object o) { try { return (T)Enum.Parse(typeof(T), o.ToString() ...