【POJ1707】【伯努利数】Sum of powers
Description

for some fixed natural k and different natural n. He observed that calculating ik
for all i (1<=i<=n) and summing up results is a too slow way to
do it, because the number of required arithmetical operations increases
as n increases. Fortunately, there is another method which takes only a
constant number of operations regardless of n. It is possible to show
that the sum Sk(n) is equal to some polynomial of degree k+1 in the variable n with rational coefficients, i.e.,

We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. M, ak+1, ak, ... , a1, a0)
will be unique for the given k. You have to write a program to find
such set of coefficients to help the schoolboy make his calculations
quicker.
Input
Output
to the output file in the given order. Numbers should be separated by
one space. Remember that you should write the answer with the smallest
positive M possible.
Sample Input
2
Sample Output
6 2 3 1 0
Source
中a[i]皆为整数.1. 伯努利数与自然数幂的关系:
2. 伯努利数递推式:
先通过递推式求得伯努利数,然后用1公式并将中间的(n+1) ^ i,变成n ^ i,后面再加上n ^ k,化进去就行了。
/*
宋代朱敦儒
《西江月·世事短如春梦》
世事短如春梦,人情薄似秋云。不须计较苦劳心。万事原来有命。
幸遇三杯酒好,况逢一朵花新。片时欢笑且相亲。明日阴晴未定。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#define LOCAL
const int MAXN = + ;
const double Pi = acos(-1.0);
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b){return b == ? a: gcd(b, a % b);}
struct Num{
ll a, b;//分数,b为分母
Num(ll x = , ll y = ) {a = x;b = y;}
void update(){
ll tmp = gcd(a, b);
a /= tmp;
b /= tmp;
}
Num operator + (const Num &c){
ll fz = a * c.b + b * c.a, fm = b * c.b;
if (fz == ) return Num(, );
ll tmp = gcd(fz, fm);
return Num(fz / tmp, fm / tmp);
}
}B[MAXN], A[MAXN];
ll C[MAXN][MAXN]; void init(){
//预处理组合数
for (int i = ; i < MAXN; i++) C[i][] = C[i][i] = ;
for (int i = ; i < MAXN; i++)
for (int j = ; j < MAXN; j++) C[i][j] = C[i - ][j] + C[i - ][j - ];
//预处理伯努利数
B[] = Num(, );
for (int i = ; i < MAXN; i++){
Num tmp = Num(, ), add;
for (int j = ; j < i; j++){
add = B[j];
add.a *= C[i + ][j];
tmp = tmp + add;
}
if (tmp.a) tmp.b *= -(i + );
tmp.update();
B[i] = tmp;
}
}
void work(){
int n;
scanf("%d", &n);
ll M = n + , flag = , Lcm;
A[] = Num(, );
for (int i = ; i <= n + ; i++){
if (B[n + - i].a == ) {A[i] = Num(, );continue;}
Num tmp = B[n + - i];
tmp.a *= C[n + ][i];//C[n+1][i] = C[n + 1][n + 1 - i]
tmp.update();
if (flag == ) Lcm = flag = tmp.b;
A[i] = tmp;
}
A[n] = A[n] + Num(n + , ); for (int i = ; i <= n + ; i++){
if (A[i].a == ) continue;
Lcm = (Lcm * A[i].b) / gcd(Lcm, A[i].b);
}
if (Lcm < ) Lcm *= -;
M *= Lcm;
printf("%lld", M);
for (int i = n + ; i >= ; i--) printf(" %lld", A[i].a * Lcm / A[i].b);
} int main(){ init();
work();
//printf("%lld\n", C[5][3]);
return ;
}
【POJ1707】【伯努利数】Sum of powers的更多相关文章
- [伯努利数] poj 1707 Sum of powers
题目链接: http://poj.org/problem?id=1707 Language: Default Sum of powers Time Limit: 1000MS Memory Lim ...
- [CSAcademy]Sum of Powers
[CSAcademy]Sum of Powers 题目大意: 给定\(n,m,k(n,m,k\le4096)\).一个无序可重集\(A\)为合法的,当且仅当\(|A|=m\)且\(\sum A_i=n ...
- Euler's Sum of Powers Conjecture
转帖:Euler's Sum of Powers Conjecture 存不存在四个大于1的整数的五次幂恰好是另一个整数的五次幂? 暴搜:O(n^4) 用dictionary:O(n^3) impor ...
- UVA766 Sum of powers(1到n的自然数幂和 伯努利数)
自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...
- UVa 766 Sum of powers (伯努利数)
题意: 求 ,要求M尽量小. 析:这其实就是一个伯努利数,伯努利数公式如下: 伯努利数满足条件B0 = 1,并且 也有 几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个 ...
- POJ 1707 Sum of powers(伯努利数)
题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...
- sum of powers
题意: 考虑所有的可重集{a1,a2,a3....ak} 满足a1+a2+....+ak=n,求所有a1^m+a2^m+a3^m的和 n,m,k<=5000 题解: part1: 考虑f[i][ ...
- 51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...
- [转] Loren on the Art of MATLAB
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/ Loren ...
随机推荐
- Bzoj 1674: [Usaco2005]Part Acquisition dijkstra,堆
1674: [Usaco2005]Part Acquisition Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 337 Solved: 162[Sub ...
- Uber入驻四川乐山峨眉地区
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- nyoj 123 士兵杀敌(四) 树状数组【单点查询+区间修改】
士兵杀敌(四) 时间限制:2000 ms | 内存限制:65535 KB 难度:5 描述 南将军麾下有百万精兵,现已知共有M个士兵,编号为1~M,每次有任务的时候,总会有一批编号连在一起人请战 ...
- [置顶] 分析Java死锁:分析jstack日志
本文中我将展示一段垃圾代码,这段代码会产生死锁,这样围绕这段代码重点展示三种不同的方法来分析线程日志,从而得知什么地方有问题. 下面的讨论将用到两个类 Account 和 DeadlockDemo c ...
- linux内核--用户态内存管理
在上一篇博客“内核内存管理”中,描述的内核内存管理的相关算法和数据结构,在这里简单描述用户态内存管理的数据结构和算法. 一,相关结构体 与进程地址空间相关的全部信息都包含在一个叫做“内存描述符”的数据 ...
- 准备在新项目中使用pgsql【资源收集】
pgsql大象数据库 是我最近在关注的一款开源数据库,可以自由修改,没那么多限制,准备在新项目中使用 postgresql中国下载站 http://www.postgres.cn/download#s ...
- springsecurity4+springboot 实现remember-me 发现springsecurity 的BUG
前言:现在开发中,记住我这个功能是普遍的,用户不可能每次登录都要输入用户名密码.昨天准备用spring security的记住我功能,各种坑啊,吐血 . 先看下具体实现吧. spring securi ...
- Java多线程小结
简述 Java是支持多线程编程的语言,线程相比于进程更加轻量级,线程共享相同的内存空间,但是拥有独立的栈.减少了进程建立.销毁的资源消耗.jdk1.5后对java的多线程编程提供了更完善的支持,使得j ...
- java获得项目绝对路径
在jsp和class文件中调用的相对路径不同. 在jsp里,根目录是WebRoot 在class文件中,根目录是WebRoot/WEB-INF/classes 当然你也可以用System.getPro ...
- shell脚本实现检測回文字符串
全部回文字的结构特征例如以下: 假设字符数是偶数,那么它在结构上表现为:一个字符序列连着还有一个字符同样但次序恰好相反的字符序列. 假设字符数为奇数,那么它在结构上表现为:一个字符序列连着还有一个字符 ...