不容易系列之(4)——考新郎

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2049

题目大意:

有N对新婚夫妇,其中所有的新娘站成一列,都盖上了红布。然后让新郎去找新娘,每个新郎只能找一个新娘,而且不能一个对一个。问其中M个新郎找错新娘的情况有多少种。

思考过程:

这其实就是一个错排问题+排列组合问题
首先要从N个新郎当中找出M个找错的。即C(N,M)。其次是对这M组新人进行错排,为D(M)。而且两者之间是乘法原则

错排和排列组合地推公式:

由于是第一次写排列组合这块的内容,写一下如何用递推公式求 C(N,M) 和 D(M)。
(1)求C(N,M)。如果我们要从N个数当中抽出M个数,那么对于N个数当中的任何一个数来说,只有被抽到和没有被抽到两种情况。不妨设K,如果没有被抽到,则需要在剩下的 N - 1 个数当中抽 M 个。即C(N - 1,M)。如果K被抽到了,那么只需要在剩下的 N - 1 个数当中抽 M - 1 个。即C(N - 1, M - 1)
所以,C(N,M) = C(N - 1,M - 1) + C(N - 1,M)
(2)求D(N)。对于{1,2,3,……N} 这N个数,如果1在K的位置,K在1的位置,(由于K可以为剩下N - 1 个数当中任意一个,所以有N - 1 种选法)那么剩下的 N - 2 个数错排即可,为(N - 1)* D(N - 2)。如果K在1的位置,而1不在K的位置,那么把1当做K,相当于对N - 1 个数进行错排。为 (N - 1)* D(N - 1)
所以,D(N)= (N - 1)* (D(N - 1)+ D(N - 2))

代码:

/*
错排
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<ctype.h>
#include<algorithm>
#include<string>
#define PI acos(-1.0)
#define maxn 1000
#define INF 1<<25
#define mem(a, b) memset(a, b, sizeof(a))
typedef long long ll;
using namespace std;
int C[22][22];
ll D[22];
void init()
{
for (int i = 0; i <=20; i++)
C[i][0] = 1;
C[1][1] = 1;
for (int i = 2; i <= 20; i++)
for (int j = 1; j <= i; j++)
C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; D[1] = 0, D[2] = 1;
for (ll i = 3; i <= 20; i++)
D[i] = (i - 1) * (D[i - 1] + D[i - 2]);
}
int main ()
{
init();
int c, n ,m;
cin>>c;
while(c--)
{
scanf("%d%d", &n, &m);
ll sum;
if (m * 2 > n) sum = C[n][n - m];
else sum = C[n][m];
sum *= D[m];
cout<<sum<<endl;
}
return 0;
}

[HDU 2049] 不容易系列之(4)——考新郎 (错排问题)的更多相关文章

  1. hdu 2049 不容易系列之(4)——考新郎 (错排递推)

    当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个 ...

  2. hdu 2049 不easy系列之(4)——考新郎

    不easy系列之(4)--考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. HDU 2049 不容易系列之(4)——考新郎 (递推,含Cmn公式)

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. hdu2049 不容易系列之(4)——考新郎 错排+组合 一共有N对新婚夫妇,N个新娘随机坐成一排,每个新郎只能选一个, 其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  5. HDU2049 不容易系列之(4)考新郎 —— 错排

    题目链接:https://vjudge.net/problem/HDU-2049 不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Me ...

  6. HDU 2049 不容易系列之(4)——考新郎 (错排+组合)

    题目链接. Problem Description 国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体 ...

  7. E - 不容易系列之(4)――考新郎 错排数公式

    国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:  首先,给每位新娘打扮得几乎一模一 ...

  8. hdu 2049 不容易系列之(4)——考新郎

    在本博AC代码中,求CNM用的是Anm/amm没用阶乘的形式,两者皆可 #include <stdio.h> int main(void) { long long a,b,larr[21] ...

  9. HDU 2049 不容易系列之(4)——考新郎( 错排 )

    链接:传送门 思路:错排水题,从N个人中选出M个人进行错排,即 C(n,m)*d[m] 补充:组合数C(n,m)能用double计算吗?第二部分有解释 Part 1. 分别求出来组合数的分子和分母然后 ...

随机推荐

  1. wpf 中DataGrid 控件的样式设置及使用

    本次要实现的效果为: 这个DataGrid需要绑定一个集合对象,所以要先定义一个Experience类,包含三个字段 /// <summary> /// 定义工作经历类 /// </ ...

  2. Java线程(学习整理)--3--简单的死锁例子

    1.线程死锁的概念: 简单地理解下吧! 我们都知道,线程在执行的过程中是占着CPU的资源的,当多个线程都需要一个被锁住的条件才能结束的时候,死锁就产生了! 还有一个经典的死锁现象: 经典的“哲学家就餐 ...

  3. 【cogs858】磁性链

    [题目描述] 有N块编号为1~N的特殊磁石相互吸附组成一条磁性链,只有它们紧挨着时才会传递吸力,他们之间的吸力很大,如果我们要从N块相连的磁石中取出一块,那么需要消耗N-1个单位的能量,空缺处不再有吸 ...

  4. 『重构--改善既有代码的设计』读书笔记----Inline Class

    如果某个类没有做太多的事情,你可以将这个类的所有特性搬移到另外一个类中,然后删除原类.可以看到,Inline Class正好和Extract Class相反,后者是将一个巨类分解成多个小类从而来分担责 ...

  5. &nbsp; 与 空格的区别

    nbsp 是 Non-Breaking SPace的缩写,即“不被折断的空格”,当两个单词使用   连接时,这两个单词就不会被分隔为2行,如下面 <div id="div1" ...

  6. nodejs版本控制

    本方法基于https://segmentfault.com/a/1190000004855835修改 配置: 使用的nvmw的git 地址https://github.com/hakobera/nvm ...

  7. php之文件上传简单介绍

    要声明的form表单格式 <form action="act.php" method="post" enctype="multipart/for ...

  8. 【技术宅4】如何把M个苹果平均分给N个小朋友

    $apple=array('apple1','apple2','apple3','apple4','apple5','apple6','apple7','apple8','apple9','apple ...

  9. Problem A: The Monocycle

    uva10047:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&am ...

  10. ubuntu删除openjdk,安装 Sun JDK

    1.到官网下载安装包: jdk-7-linux-i586.tar.gz 2.创建安装目录:sudo mkdir /usr/lib/jvm 3. 解压缩:tar zxvf ./jdk-7-linux-i ...