不容易系列之(4)——考新郎

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2049

题目大意:

有N对新婚夫妇,其中所有的新娘站成一列,都盖上了红布。然后让新郎去找新娘,每个新郎只能找一个新娘,而且不能一个对一个。问其中M个新郎找错新娘的情况有多少种。

思考过程:

这其实就是一个错排问题+排列组合问题
首先要从N个新郎当中找出M个找错的。即C(N,M)。其次是对这M组新人进行错排,为D(M)。而且两者之间是乘法原则

错排和排列组合地推公式:

由于是第一次写排列组合这块的内容,写一下如何用递推公式求 C(N,M) 和 D(M)。
(1)求C(N,M)。如果我们要从N个数当中抽出M个数,那么对于N个数当中的任何一个数来说,只有被抽到和没有被抽到两种情况。不妨设K,如果没有被抽到,则需要在剩下的 N - 1 个数当中抽 M 个。即C(N - 1,M)。如果K被抽到了,那么只需要在剩下的 N - 1 个数当中抽 M - 1 个。即C(N - 1, M - 1)
所以,C(N,M) = C(N - 1,M - 1) + C(N - 1,M)
(2)求D(N)。对于{1,2,3,……N} 这N个数,如果1在K的位置,K在1的位置,(由于K可以为剩下N - 1 个数当中任意一个,所以有N - 1 种选法)那么剩下的 N - 2 个数错排即可,为(N - 1)* D(N - 2)。如果K在1的位置,而1不在K的位置,那么把1当做K,相当于对N - 1 个数进行错排。为 (N - 1)* D(N - 1)
所以,D(N)= (N - 1)* (D(N - 1)+ D(N - 2))

代码:

/*
错排
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<ctype.h>
#include<algorithm>
#include<string>
#define PI acos(-1.0)
#define maxn 1000
#define INF 1<<25
#define mem(a, b) memset(a, b, sizeof(a))
typedef long long ll;
using namespace std;
int C[22][22];
ll D[22];
void init()
{
for (int i = 0; i <=20; i++)
C[i][0] = 1;
C[1][1] = 1;
for (int i = 2; i <= 20; i++)
for (int j = 1; j <= i; j++)
C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; D[1] = 0, D[2] = 1;
for (ll i = 3; i <= 20; i++)
D[i] = (i - 1) * (D[i - 1] + D[i - 2]);
}
int main ()
{
init();
int c, n ,m;
cin>>c;
while(c--)
{
scanf("%d%d", &n, &m);
ll sum;
if (m * 2 > n) sum = C[n][n - m];
else sum = C[n][m];
sum *= D[m];
cout<<sum<<endl;
}
return 0;
}

[HDU 2049] 不容易系列之(4)——考新郎 (错排问题)的更多相关文章

  1. hdu 2049 不容易系列之(4)——考新郎 (错排递推)

    当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个 ...

  2. hdu 2049 不easy系列之(4)——考新郎

    不easy系列之(4)--考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. HDU 2049 不容易系列之(4)——考新郎 (递推,含Cmn公式)

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. hdu2049 不容易系列之(4)——考新郎 错排+组合 一共有N对新婚夫妇,N个新娘随机坐成一排,每个新郎只能选一个, 其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  5. HDU2049 不容易系列之(4)考新郎 —— 错排

    题目链接:https://vjudge.net/problem/HDU-2049 不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Me ...

  6. HDU 2049 不容易系列之(4)——考新郎 (错排+组合)

    题目链接. Problem Description 国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体 ...

  7. E - 不容易系列之(4)――考新郎 错排数公式

    国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:  首先,给每位新娘打扮得几乎一模一 ...

  8. hdu 2049 不容易系列之(4)——考新郎

    在本博AC代码中,求CNM用的是Anm/amm没用阶乘的形式,两者皆可 #include <stdio.h> int main(void) { long long a,b,larr[21] ...

  9. HDU 2049 不容易系列之(4)——考新郎( 错排 )

    链接:传送门 思路:错排水题,从N个人中选出M个人进行错排,即 C(n,m)*d[m] 补充:组合数C(n,m)能用double计算吗?第二部分有解释 Part 1. 分别求出来组合数的分子和分母然后 ...

随机推荐

  1. asp.net mvc 部署在IIS7.5上出现的[没有相关的源行]错误的解决办法

    今天在IIS7.5上部署一个MVC小项目的时候出现以下错误:C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET File ...

  2. C++序列化库的实现

    C++中经常需要用到序列化与反序列化功能,由于C++标准中没有提供此功能,于是就出现了各式各样的序列化库,如boost中的,如谷歌的开源项目,但是很多库都依赖其他库过于严重,导致库变得很庞大.今天来分 ...

  3. Linux嘚瑟一时的Shared Object

    场景概述 近来接触node程序以及负责实现node扩展来对象本地SDK的调用,旨在借node及其第三方库来快速实现RESTful API以及给浏览器端使用.当然这中间研究工作耗了不少时间. 在实现目标 ...

  4. 简单高效读写修改整个文本Slurp

    语法: use File::Slurp; #标量环境下一次读取所有文本内容到标量中. my $text = read_file( 'filename' ) ; #  读取文本的所有行到数组中. my ...

  5. 1. mybatis批量插入数据

    通过list <insert id="saveByList" useGeneratedKeys="true" parameterType="ja ...

  6. Bootstrap_Javascript_按钮插件

    一 . 加载状态按钮 HTML: <button class="btnbtn-primary" data-loading-text="正在加载中,请稍等...&qu ...

  7. Hash索引和BTree索引区别

    (1)Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询. 由于 Hash 索引比较的是进行 Hash ...

  8. Sequoyah 本机开发Native Development: Invalid path for NDK(路径无效) 解决方案

    打开window菜单下的preference选项.选择Android,Native Development(本地开发) 选择你的NDK安装目录. 但是,这个插件目前仅支持ndk的r4和r5版本,更高版 ...

  9. uboot总结:uboot配置和启动过程2(mkconfig分析)

    说明:文件位置:在uboot的目录下,文件名为:mkconfig.本身是一个脚本文件. 它的主要作用的是: (1)创建一个重要的符号链接 (2)创建一个config.mk文件(在include目录下) ...

  10. C++实现红黑树,仿STL封装

    //RB_Tree.hpp //The code of red black trees //2011/12/31 by Adoo // The foundation :http://www.roadi ...