RSA算法它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

一、RSA算法 :

首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数
p, q, r 这三个数便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了
再来, 计算 n = pq
m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小於 n, 然後分段编码
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码後的资料

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
於是乎, 解码完毕 等会会证明 c 和 a 其实是相等的   :)

如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b
他如果要解码的话, 必须想办法得到 r
所以, 他必须先对 n 作质因数分解
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难
<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的

<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 modulo 中是 preserve 乘法的
(x == y mod z   and   u == v mod z   =>   xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
    则 a^(p-1) == 1 mod p (费马小定理)   =>   a^(k(p-1)(q-1)) == 1 mod p
       a^(q-1) == 1 mod q (费马小定理)   =>   a^(k(p-1)(q-1)) == 1 mod q
    所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1   =>   pq | a^(k(p-1)(q-1)) - 1
    即 a^(k(p-1)(q-1)) == 1 mod pq
    =>   c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
    则 a^(q-1) == 1 mod q (费马小定理)
    =>   a^(k(p-1)(q-1)) == 1 mod q
    =>   c == a^(k(p-1)(q-1)+1) == a mod q
    =>   q | c - a
    因 p | a
    =>   c == a^(k(p-1)(q-1)+1) == 0 mod p
    =>   p | c - a
    所以, pq | c - a   =>   c == a mod pq

3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上

4. 如果 a 同时是 p 和 q 的倍数时,
    则 pq | a
    =>   c == a^(k(p-1)(q-1)+1) == 0 mod pq
    =>   pq | c - a
    =>   c == a mod pq
                                         Q.E.D.

这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n   (n = pq)
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等於 c, 所以这个过程确实能做到编码解码的功能

二、RSA 的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。

三、RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

四、RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公 钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用 One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。

五、RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能 如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

C语言实现

#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
    r=r*a;
    r=r%c;
    b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
     printf("e is error,please input again: ");
     scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1)   d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
    case 1: printf("input the m: "); /*输入要加密的明文数字*/
            scanf("%d",&m);
            c=candp(m,e,n);
            printf("the cipher is %d\n",c);break;
    case 2: printf("input the c: "); /*输入要解密的密文数字*/
            scanf("%d",&c);
            m=candp(c,d,n);
            printf("the cipher is %d\n",m);break;
}
getch();
}

RSA算法详解及C语言实现的更多相关文章

  1. 安全体系(二)——RSA算法详解

    本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...

  2. 信息安全-5:RSA算法详解(已编程实现)[原创]

    转发注明出处:http://www.cnblogs.com/0zcl/p/6120389.html 背景介绍 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加 ...

  3. [转载]RSA算法详解

    原文:http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  4. RSA算法详解

    1.RSA加密算法是最常用的非对称加密算法 2.RSARSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名, 3.目前学术界无法证明RS ...

  5. 最短路径Dijkstar算法和Floyd算法详解(c语言版)

    博客转载自:https://blog.csdn.net/crescent__moon/article/details/16986765 先说说Dijkstra吧,这种算法只能求单源最短路径,那么什么是 ...

  6. 安全体系(三)——SHA1算法详解

    本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保 ...

  7. 安全体系(一)—— DES算法详解

    本文主要介绍了DES算法的步骤,包括IP置换.密钥置换.E扩展置换.S盒代替.P盒置换和末置换. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(二)——RSA算 ...

  8. 《算法详解:C++11语言描述》已出版

    经过漫长的编写.修订和印刷过程,书籍<算法详解:C++11语言描述>终于出版了!目前本书已在各大电商平台上架,搜索书名即可找到对应商品.本书的特色在于: 介绍最新的C++11.C++14和 ...

  9. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

随机推荐

  1. 当 IDENTITY_INSERT 设置为 OFF 时,不能向表 中的标识列插入显式值错误的解决方法

    一个主键.两个外键,把两个外键改为非空就行了. CREATE TABLE [dbo].[User_Compare]( ,) NOT NULL, [UserId] [int] NOT NULL, [Pa ...

  2. RHEL 7特性说明(六):集群

    来自:Linux中国  2014-07-16 00:00:00  ed Hat Enterprise Linux 7.0 是 Red Hat 的下一代操作系统完整套件,旨在用于关键任务企业级计算以及顶 ...

  3. SQL Server与Oracle中的隔离级别

    在SQL92标准中,事务隔离级别分为四种,分别为:Read Uncommitted.Read Committed.Read Repeatable.Serializable 其中Read Uncommi ...

  4. 单元测试unit test,集成测试integration test和功能测试functional test的区别

    以下内容转自 https://codeutopia.net/blog/2015/04/11/what-are-unit-testing-integration-testing-and-function ...

  5. LightOj_1265 Island of Survival

    题目链接 题意: 在孤岛生存, 孤岛上有t头老虎,d头鹿, 每天会出现随机出现两只生物(包括你自己), 如果出现了一只老虎,那么你将被吃掉, 如果两只老虎, 则两只老虎会同归于尽,其他情况你都将生存下 ...

  6. LightOJ_1248 Dice (III)

    题目链接 题意: 给一个质地均匀的n的骰子, 求投掷出所有点数至少一次的期望次数. 思路: 这就是一个经典的邮票收集问题(Coupon Collector Problem). 投掷出第一个未出现的点数 ...

  7. BZOJ 1876 SuperGCD

    Description Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约数)!因此他经常和别人比赛计算GCD.有一天Sheng bill很嚣张地找到了你,并要求 ...

  8. matlab拟合三维椭球

            同学问的,查了下资料. %需要拟合的点的坐标为(0,-174.802,990.048),(0.472,-171.284,995.463),(0.413,-168.639,1003.55 ...

  9. Samara SAU ACM ICPC 2013-2014 Quarterfinal Qualification Contest

    A: 简单题,因为题目中说了不会有数据相同: #include<cstdio> #include<algorithm> #define maxn 200005 using na ...

  10. 李洪强iOS开发之-环信01_iOS SDK 前的准备工作

    李洪强iOS开发之-环信01_iOS SDK 前的准备工作 1.1_注册环信开发者账号并创建后台应用 详细步骤:  注册并创建应用 注册环信开发者账号 第 1 步:在环信官网上点击“即时通讯云”,并点 ...