题目链接:

  http://codeforces.com/problemset/problem/710/D

题目大意:

  两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个。

  0 < a1, a2 ≤ 2·109,  - 2·109 ≤ b1, b2, L, R ≤ 2·109, L ≤ R).

题目思路:

  【数论】【扩展欧几里得】

  据题意可得同余方程组  x=b1(mod a1)  即  x=k1*a1+b1

              x=b2(mod a2)     x=k2*a2+b2

  化简,k1*a1=k2*a2+(b2-b1) 即 a1= (b2-b1)(mod a2)

  于是只要求一个同余方程即可。令a=a1,b=a2,c=b2-b1。

  扩展欧几里得求解x,再把x改为在L~R区间内的第一个通解,计算数量即可(每次增加lcm(a1,a2)答案+1)。

  

 //
//by coolxxx
//#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<iomanip>
#include<map>
#include<memory.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#include<stdbool.h>
#include<math.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define eps (1e-8)
#define J 10
#define mod 1000000007
#define MAX 0x7f7f7f7f
#define PI 3.14159265358979323
#define N 20000004
using namespace std;
typedef long long LL;
int cas,cass;
int n,m,lll,ans;
LL a1,a2,b1,b2,l,r;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b){x=,y=;return a;}
LL d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k;
LL a,b,c,d,x,y,ny,lcm;
// for(scanf("%d",&cas);cas;cas--)
// for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
// while(~scanf("%s",s+1))
while(~scanf("%I64d",&a1))
{
cin>>b1>>a2>>b2>>l>>r;
l=max(l,b1);l=max(l,b2);
d=exgcd(a1,a2,x,y);
lcm=a1/d*a2;
if((b2-b1)%d!=)
{
puts("");
continue;
}
a=a1/d;b=a2/d;c=(b2-b1)/d;
d=exgcd(a,b,x,y);
x=a1*(x*c)+b1;
if(x>l)x=x-(x-l)/lcm*lcm;
else x=x+(l--x+lcm)/lcm*lcm;
if(x>r)puts("");
else printf("%I64d\n",(r-x+lcm)/lcm-(l--x+lcm)/lcm);
}
return ;
}
/*
// //
*/

【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions的更多相关文章

  1. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

  2. 数论 + 扩展欧几里得 - SGU 106. The equation

    The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...

  3. [ZLXOI2015]殉国 数论 扩展欧几里得

    题目大意:已知a,b,c,求满足ax+by=c (x>=0,y>=0)的(x+y)最大值与最小值与解的个数. 直接exgcd,求出x,y分别为最小正整数的解,然后一算就出来啦 #inclu ...

  4. 数论--扩展欧几里得exgcd

    算法思想 我们想求得一组\(x,y\)使得 \(ax+by = \gcd(a,b)\) 根据 \(\gcd(a,b) = \gcd(b,a\bmod b)\) 如果我们现在有\(x',y'\) 使得 ...

  5. codeforces 710D Two Arithmetic Progressions(线性同余方程)

    题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...

  6. 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  7. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  8. [codeforces 200 E Tractor College]枚举,扩展欧几里得,三分

    题目出自 Codeforces Round #126 (Div. 2) 的E. 题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz ...

  9. JZYZOJ1371 青蛙的约会 扩展欧几里得 GTMD数论

    http://172.20.6.3/Problem_Show.asp?id=1371 题意是两个青蛙朝同一个方向跳 http://www.cnblogs.com/jackge/archive/2013 ...

随机推荐

  1. PHP编译安装出错configure: error: mcrypt.h not found. Please reinstall libmcrypt的解决办法

    1.下载libmcrypt wget http://jaist.dl.sourceforge.net/project/mcrypt/Libmcrypt/2.5.8/libmcrypt-2.5.8.ta ...

  2. Quartz Quick Start Guide

    Welcome to the QuickStart guide for Quartz. As you read this guide, expect to see details of: Downlo ...

  3. Java集群之session共享解决方案

    随着互联网的日益壮大,网站的pv和uv成线性或者指数倍的增加.单服务器单数据库早已经不能满足实际需求.比如像盛大,淘宝这样的大型网络公司,更是如此.     集群,也就是让一组计算机服务器协同工作,达 ...

  4. c# 为什么要用 get set 属性

    1 可以对赋值 做验证 ,范伟限制,额外的限制 2 可以设置 只读 只写 3 可以做线程同步 4 可以将属性设置在interface接口中 5 可以使用虚属性 或 抽象属性 可以填补 没有 虚字段 抽 ...

  5. JavaScript HTML DOM - 改变CSS

    JavaScript HTML DOM - 改变CSS HTML DOM 允许 JavaScript 改变 HTML 元素的样式. 改变 HTML 样式 如需改变 HTML 元素的样式,请使用这个语法 ...

  6. Vijos1865 NOI2014 魔法森林 LCT维护生成树

    基本思路: 首先按照weightA升序排序,然后依次在图中加边,并维护起点到终点路径上weightB的最大值 如果加边过程中生成了环,则删除环中weightB最大的边 由于是无向图,点之间没有拓扑序, ...

  7. 子树大小平衡树(Size Balanced Tree,SBT)操作模板及杂谈

    基础知识(包括但不限于:二叉查找树是啥,SBT又是啥反正又不能吃,平衡树怎么旋转,等等)在这里就不(lan)予(de)赘(duo)述(xie)了. 先贴代码(数组模拟): int seed; int ...

  8. 【BZOJ1012】【树状数组求区间最值】最大数maxnumber

    Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度. 2. ...

  9. BeanUtils在web项目中的应用

    package cn.gdpe.jdbc; import java.util.Enumeration; import javax.servlet.http.HttpServletRequest; im ...

  10. Jquery 获取日期date()对象

    获取JavaScript 的时间使用内置的Date函数完成 var mydate = new Date(); mydate.getYear(); //获取当前年份(2位) mydate.getFull ...