[LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)
问题
给出一个索引k,返回杨辉三角形的第k行。
例如,给出k = 3,返回[1, 3, 3, 1]
注意:
你可以优化你的算法使之只使用O(k)的额外空间吗?
初始思路
首先来复习复习杨辉三角形的性质(来自wiki):
- 杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
- 第
行的数字个数为
个。
- 第
行的第
个数字为组合数
。
- 第
行数字和为
。
- 除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第
行第
个数字等于第
行的第
个数字与第
个数字的和)。这是因为有组合恒等式:
。可用此性质写出整个杨辉三角形。
看到第2条和5条是不是发现和 [LeetCode 120] - 三角形(Triangle) 中的最终算法有点像?没错,这里可以使用类似的方法得出杨辉三角形中第k行的数据,而且更简单:
- 第1列和最后1列的数字永远为1
- 其他列如性质5所述,为上一行纵坐标j-1和纵坐标j的点之和
最终得出的只是用O(k)额外空间的代码如下:
class Solution {
public:
std::vector<int> getRow(int rowIndex)
{
std::vector<int> columnInfo(rowIndex + ); columnInfo[] = ; if(rowIndex == )
{
return columnInfo;
} columnInfo[] = ; for(int i = ; i < rowIndex + ; ++i)
{
for(int j = i; j > ; --j)
{
if(j == || j == i)
{
columnInfo[j] = ;
}
else
{
columnInfo[j] = columnInfo[j - ] + columnInfo[j];
}
}
} return columnInfo;
}
};
getRow
顺利通过Judge Small和Judge Large。
题外
根据杨辉三角形的性质3,我们也可以直接计算某行所有数的值。由于对称性,实际只需要计算前一半的列并将结果拷贝到后一半列即可。但是这种方法的问题是需要计算很大的阶乘,当行数达到一定大小时不做特殊处理就会溢出了。以下是一个示例,没做特殊处理,只是用int64_t保存中间结果。当输入为21时就会溢出了:
class SolutionV2 {
public:
std::vector<int> getRow(int rowIndex)
{
std::vector<int> columnInfo(rowIndex + ); nFactorial_ = ; for(int i = ; i <= rowIndex; ++i)
{
nFactorial_ *= i;
} columnInfo[] = ;
columnInfo[rowIndex] = ; for(int i = ; i <= rowIndex / ; ++i)
{
columnInfo[i] = CaculateCombination(rowIndex, i);
} int left = ;
int right = rowIndex - ; while(left < right)
{
columnInfo[right] = columnInfo[left];
++left;
--right;
} return columnInfo;
} private:
int64_t CaculateCombination(int n, int k)
{
int64_t kFactorial = ;
int64_t restFactorial = ; for(int i = ; i <= k; ++i)
{
kFactorial *= i;
} for(int i = ; i <= n - k; ++i)
{
restFactorial *= i;
} return nFactorial_ / (kFactorial * restFactorial);
} int64_t nFactorial_;
};
阶乘-有缺陷
[LeetCode 119] - 杨辉三角形II(Pascal's Triangle II)的更多相关文章
- 杨辉三角形II(Pascal's Triangle II)
杨辉三角形II(Pascal's Triangle II) 问题 给出一个索引k,返回杨辉三角形的第k行. 例如,给出k = 3,返回[1, 3, 3, 1] 注意: 你可以优化你的算法使之只使用O( ...
- 【LEETCODE】34、119题,Pascal's Triangle II
package y2019.Algorithm.array; import java.util.ArrayList; import java.util.List; /** * @ProjectName ...
- 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...
- LeetCode 118:杨辉三角 II Pascal's Triangle II
公众号:爱写bug(ID:icodebugs) 作者:爱写bug 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行. Given a non-negative index k whe ...
- [Swift]LeetCode119. 杨辉三角 II | Pascal's Triangle II
Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...
- 119 Pascal's Triangle II 帕斯卡三角形 II Pascal's Triangle II
给定一个索引 k,返回帕斯卡三角形(杨辉三角)的第 k 行.例如,给定 k = 3,则返回 [1, 3, 3, 1].注:你可以优化你的算法到 O(k) 的空间复杂度吗?详见:https://leet ...
- 学会从后往前遍历,例 [LeetCode] Pascal's Triangle II,剑指Offer 题4
当我们需要改变数组的值时,如果从前往后遍历,有时会带来很多麻烦,比如需要插入值,导致数组平移,或者新的值覆盖了旧有的值,但旧有的值依然需要被使用.这种情况下,有时仅仅改变一下数组的遍历方向,就会避免这 ...
- leetcode 118. Pascal's Triangle 、119. Pascal's Triangle II 、120. Triangle
118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp- ...
- 【LeetCode】118 & 119 - Pascal's Triangle & Pascal's Triangle II
118 - Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, ...
随机推荐
- SCOPE 中 SPFILE、MEMORY、BOTH 的小小区别
ALTER SYSTEM 中 SCOPE=SPFILE/MEMORY/BOTH 的区别: SCOPE = SPFILE The change is applied in theserverparame ...
- heap(堆)和stack(栈)的区别
heap是堆,stack是栈 stack的空间由操作系统自动分配/释放,heap上的空间手动分配/释放. stack空间有限,heap是很大的自由存储区 C中的malloc函数分配的内存空间即在hea ...
- 双slave的server_uuid同样问题
早上做数据迁移,部署完slave2,发现3台机子的日志狂刷: 旧slave: 2014-05-29 14:35:35 996 [Note] Slave: received end packet fro ...
- Php Laravel框架 多表关系处理 之 Eloquent一对多关系处理
Php Laravel框架 多表关系处理 之 Eloquent一对多关系处理 本博文主要介绍 Laravel 框架中 Eloquent 对一对多关系的处理以及在 Laravel Administra ...
- [AngularJS] Exploring the Angular 1.5 .component() method
Angualr 1.4: .directive('counter', function counter() { return { scope: {}, restrict: 'EA', transclu ...
- 逆拓扑排序 HDU2647Reward
这个题如果用邻接矩阵的话,由于n比较大,会超内存,所以选用邻接表的形式.还有就是这个题有那个等级的问题,一级比一级的福利高,所以不能直接拓扑排序,而是反过来,计算出度,找出度为0的顶点,然后更新出度数 ...
- NYOJ-129 并查集
这个题基本上是并查集稍微一变, 只是加了一些判断条件而已,就是将点合并成树, 最后遍历一下, 统计一下有多少棵树, 如果不是1的话, 肯定不是树,所以,可以根据这个来判断 #include <s ...
- 《fullPage.js》创建全屏滚动的网站
插件介绍 fullPage.js是一个简单易用的插件,创建全屏滚动的网站(也被称为单页网站).它允许全屏滚动创建网站,以及添加内部滑块. 浏览器兼容性 主要功能 支持鼠标滚动 支持前进后退和键盘控制 ...
- Struts2与jQuery.ajax()的结合
1.客户端是通过$.ajax()方法向login.action传递数据:2.其中action中execute()方法返回值为空,并通过[ServletActionContext.getResponse ...
- Wcf+EF框架搭建实例
一.最近在使用Wcf创建数据服务,但是在和EF框架搭建数据访问时遇到了许多问题 下面是目前整理的基本框架代码,经供参考使用,源代码地址:http://git.oschina.net/tiama3798 ...