转自:http://blog.csdn.net/wuwenxiang91322/article/details/12231657

二叉树的定义:

二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。
    二叉树(BinaryTree)是n(n≥0)个结点的有限集,它或者是空集(n=0),或者由一个根结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。
    这个定义是递归的。由于左、右子树也是二叉树, 因此子树也可为空树。下图中展现了五种不同基本形态的二叉树。

其中 (a) 为空树, (b) 为仅有一个结点的二叉树, (c) 是仅有左子树而右子树为空的二叉树, (d) 是仅有右子树而左子树为空的二叉树, (e) 是左、右子树均非空的二叉树。这里应特别注意的是,二叉树的左子树和右子树是严格区分并且不能随意颠倒的,图 (c) 与图 (d) 就是两棵不同的二叉树。

二叉树的遍历

对于二叉树来讲最主要、最基本的运算是遍历。
    遍历二叉树 是指以一定的次序访问二叉树中的每个结点。所谓 访问结点 是指对结点进行各种操作的简称。例如,查询结点数据域的内容,或输出它的值,或找出结点位置,或是执行对结点的其他操作。遍历二叉树的过程实质是把二叉树的结点进行线性排列的过程。假设遍历二叉树时访问结点的操作就是输出结点数据域的值,那么遍历的结果得到一个线性序列。

从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
     (1)访问结点本身(N),
     (2)遍历该结点的左子树(L),
     (3)遍历该结点的右子树(R)。
以上三种操作有六种执行次序:
     NLR、LNR、LRN、NRL、RNL、RLN。
注意:
    前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。
  由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

二叉树的java实现

首先创建一棵二叉树如下图,然后对这颗二叉树进行遍历操作(遍历操作的实现分为递归实现和非递归实现),同时还提供一些方法如获取双亲结点、获取左孩子、右孩子等。

java实现代码:

  1. <span abp="506" style="font-size:14px;">package study_02.datastructure.tree;
  2. import java.util.Stack;
  3. /**
  4. * 二叉树的链式存储
  5. * @author WWX
  6. */
  7. public class BinaryTree {
  8. private TreeNode root=null;
  9. public BinaryTree(){
  10. root=new TreeNode(1,"rootNode(A)");
  11. }
  12. /**
  13. * 创建一棵二叉树
  14. * <pre>
  15. *           A
  16. *     B          C
  17. *  D     E            F
  18. *  </pre>
  19. * @param root
  20. * @author WWX
  21. */
  22. public void createBinTree(TreeNode root){
  23. TreeNode newNodeB = new TreeNode(2,"B");
  24. TreeNode newNodeC = new TreeNode(3,"C");
  25. TreeNode newNodeD = new TreeNode(4,"D");
  26. TreeNode newNodeE = new TreeNode(5,"E");
  27. TreeNode newNodeF = new TreeNode(6,"F");
  28. root.leftChild=newNodeB;
  29. root.rightChild=newNodeC;
  30. root.leftChild.leftChild=newNodeD;
  31. root.leftChild.rightChild=newNodeE;
  32. root.rightChild.rightChild=newNodeF;
  33. }
  34. public boolean isEmpty(){
  35. return root==null;
  36. }
  37. //树的高度
  38. public int height(){
  39. return height(root);
  40. }
  41. //节点个数
  42. public int size(){
  43. return size(root);
  44. }
  45. private int height(TreeNode subTree){
  46. if(subTree==null)
  47. return 0;//递归结束:空树高度为0
  48. else{
  49. int i=height(subTree.leftChild);
  50. int j=height(subTree.rightChild);
  51. return (i<j)?(j+1):(i+1);
  52. }
  53. }
  54. private int size(TreeNode subTree){
  55. if(subTree==null){
  56. return 0;
  57. }else{
  58. return 1+size(subTree.leftChild)
  59. +size(subTree.rightChild);
  60. }
  61. }
  62. //返回双亲结点
  63. public TreeNode parent(TreeNode element){
  64. return (root==null|| root==element)?null:parent(root, element);
  65. }
  66. public TreeNode parent(TreeNode subTree,TreeNode element){
  67. if(subTree==null)
  68. return null;
  69. if(subTree.leftChild==element||subTree.rightChild==element)
  70. //返回父结点地址
  71. return subTree;
  72. TreeNode p;
  73. //现在左子树中找,如果左子树中没有找到,才到右子树去找
  74. if((p=parent(subTree.leftChild, element))!=null)
  75. //递归在左子树中搜索
  76. return p;
  77. else
  78. //递归在右子树中搜索
  79. return parent(subTree.rightChild, element);
  80. }
  81. public TreeNode getLeftChildNode(TreeNode element){
  82. return (element!=null)?element.leftChild:null;
  83. }
  84. public TreeNode getRightChildNode(TreeNode element){
  85. return (element!=null)?element.rightChild:null;
  86. }
  87. public TreeNode getRoot(){
  88. return root;
  89. }
  90. //在释放某个结点时,该结点的左右子树都已经释放,
  91. //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
  92. public void destroy(TreeNode subTree){
  93. //删除根为subTree的子树
  94. if(subTree!=null){
  95. //删除左子树
  96. destroy(subTree.leftChild);
  97. //删除右子树
  98. destroy(subTree.rightChild);
  99. //删除根结点
  100. subTree=null;
  101. }
  102. }
  103. public void traverse(TreeNode subTree){
  104. System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
  105. traverse(subTree.leftChild);
  106. traverse(subTree.rightChild);
  107. }
  108. //前序遍历
  109. public void preOrder(TreeNode subTree){
  110. if(subTree!=null){
  111. visted(subTree);
  112. preOrder(subTree.leftChild);
  113. preOrder(subTree.rightChild);
  114. }
  115. }
  116. //中序遍历
  117. public void inOrder(TreeNode subTree){
  118. if(subTree!=null){
  119. inOrder(subTree.leftChild);
  120. visted(subTree);
  121. inOrder(subTree.rightChild);
  122. }
  123. }
  124. //后续遍历
  125. public void postOrder(TreeNode subTree) {
  126. if (subTree != null) {
  127. postOrder(subTree.leftChild);
  128. postOrder(subTree.rightChild);
  129. visted(subTree);
  130. }
  131. }
  132. //前序遍历的非递归实现
  133. public void nonRecPreOrder(TreeNode p){
  134. Stack<TreeNode> stack=new Stack<TreeNode>();
  135. TreeNode node=p;
  136. while(node!=null||stack.size()>0){
  137. while(node!=null){
  138. visted(node);
  139. stack.push(node);
  140. node=node.leftChild;
  141. }
  142. <span abp="507" style="font-size:14px;">while</span>(stack.size()>0){
  143. node=stack.pop();
  144. node=node.rightChild;
  145. }
  146. }
  147. }
  148. //中序遍历的非递归实现
  149. public void nonRecInOrder(TreeNode p){
  150. Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
  151. TreeNode node =p;
  152. while(node!=null||stack.size()>0){
  153. //存在左子树
  154. while(node!=null){
  155. stack.push(node);
  156. node=node.leftChild;
  157. }
  158. //栈非空
  159. if(stack.size()>0){
  160. node=stack.pop();
  161. visted(node);
  162. node=node.rightChild;
  163. }
  164. }
  165. }
  166. //后序遍历的非递归实现
  167. public void noRecPostOrder(TreeNode p){
  168. Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
  169. TreeNode node =p;
  170. while(p!=null){
  171. //左子树入栈
  172. for(;p.leftChild!=null;p=p.leftChild){
  173. stack.push(p);
  174. }
  175. //当前结点无右子树或右子树已经输出
  176. while(p!=null&&(p.rightChild==null||p.rightChild==node)){
  177. visted(p);
  178. //纪录上一个已输出结点
  179. node =p;
  180. if(stack.empty())
  181. return;
  182. p=stack.pop();
  183. }
  184. //处理右子树
  185. stack.push(p);
  186. p=p.rightChild;
  187. }
  188. }
  189. public void visted(TreeNode subTree){
  190. subTree.isVisted=true;
  191. System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
  192. }
  193. /**
  194. * 二叉树的节点数据结构
  195. * @author WWX
  196. */
  197. private class  TreeNode{
  198. private int key=0;
  199. private String data=null;
  200. private boolean isVisted=false;
  201. private TreeNode leftChild=null;
  202. private TreeNode rightChild=null;
  203. public TreeNode(){}
  204. /**
  205. * @param key  层序编码
  206. * @param data 数据域
  207. */
  208. public TreeNode(int key,String data){
  209. this.key=key;
  210. this.data=data;
  211. this.leftChild=null;
  212. this.rightChild=null;
  213. }
  214. }
  215. //测试
  216. public static void main(String[] args) {
  217. BinaryTree bt = new BinaryTree();
  218. bt.createBinTree(bt.root);
  219. System.out.println("the size of the tree is " + bt.size());
  220. System.out.println("the height of the tree is " + bt.height());
  221. System.out.println("*******(前序遍历)[ABDECF]遍历*****************");
  222. bt.preOrder(bt.root);
  223. System.out.println("*******(中序遍历)[DBEACF]遍历*****************");
  224. bt.inOrder(bt.root);
  225. System.out.println("*******(后序遍历)[DEBFCA]遍历*****************");
  226. bt.postOrder(bt.root);
  227. System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");
  228. bt.nonRecPreOrder(bt.root);
  229. System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");
  230. bt.nonRecInOrder(bt.root);
  231. System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");
  232. bt.noRecPostOrder(bt.root);
  233. }
  234. }
  235. </span>

输出结果

the size of the tree is 6
the height of the tree is 3
*******(前序遍历)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
*******(中序遍历)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
*******(后序遍历)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)
***非递归实现****(前序遍历)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
***非递归实现****(中序遍历)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
***非递归实现****(后序遍历)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)

【数据结构】之二叉树的java实现的更多相关文章

  1. 数据结构二叉树的java实现,包括二叉树的创建、搜索、删除和遍历

    根据自己的学习体会并参考了一些网上的资料,以java写出了二叉树的创建.搜索.删除和遍历等操作,尚未实现的功能有:根据先序和中序遍历,得到后序遍历以及根据后序和中序遍历,得到先序遍历,以及获取栈的深度 ...

  2. 二分法与二叉树的 Java 实现

    算法与数据结构始终是计算机基础的重要一环,今天我们来讨论下 Java 中二叉树的实现以及一些简单的小算法,如二分查找,归并排序等. 二分查找 二分查找是一种在有序数组中查找某一特定元素的搜索算法,它在 ...

  3. 二叉树的Java实现及特点总结

    二叉树是一种非常重要的数据结构,它同时具有数组和链表各自的特点:它可以像数组一样快速查找,也可以像链表一样快速添加.但是他也有自己的缺点:删除操作复杂. 我们先介绍一些关于二叉树的概念名词. 二叉树: ...

  4. 数据结构与算法—二叉排序树(java)

    前言 前面介绍学习的大多是线性表相关的内容,把指针搞懂后其实也没有什么难度.规则相对是简单的. 再数据结构中树.图才是数据结构标志性产物,(线性表大多都现成api可以使用),因为树的难度相比线性表大一 ...

  5. 数据结构与算法【Java】03---栈

    前言 数据 data 结构(structure)是一门 研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构才可以编写出更加漂亮,更加有效率的代码. 要学习好数据结构就要多多考虑如何将生 ...

  6. 数据结构与算法【Java】05---排序算法总结

    前言 数据 data 结构(structure)是一门 研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构才可以编写出更加漂亮,更加有效率的代码. 要学习好数据结构就要多多考虑如何将生 ...

  7. 数据结构与算法【Java】08---树结构的实际应用

    前言 数据 data 结构(structure)是一门 研究组织数据方式的学科,有了编程语言也就有了数据结构.学好数据结构才可以编写出更加漂亮,更加有效率的代码. 要学习好数据结构就要多多考虑如何将生 ...

  8. 【图数据结构的遍历】java实现广度优先和深度优先遍历

    [图数据结构的遍历]java实现广度优先和深度优先遍历 宽度优先搜索(BFS)遍历图需要使用队列queue数据结构: 深度优先搜索(DFS, Depth First Search)的实现 需要使用到栈 ...

  9. python数据结构之二叉树的统计与转换实例

    python数据结构之二叉树的统计与转换实例 这篇文章主要介绍了python数据结构之二叉树的统计与转换实例,例如统计二叉树的叶子.分支节点,以及二叉树的左右两树互换等,需要的朋友可以参考下 一.获取 ...

随机推荐

  1. ASP.NET MVC5总结(四)登陆中常用技术解析之验证码

    在应用软件中,登陆系统我们往往会用到验证码技术,下面将介绍在MVC中用到的验证码技术. 1.前端代码段及前端效果图如下 <div class="row"> <in ...

  2. 时间处理总结(一).net

    不断整理中... 获取当前时间DateTime.Now.ToString("d") ;//获取到的日期格式为eg :2013/11/14 时间格式只取年月日DateTime.Now ...

  3. java ,js获取web工程路径

    一.java获取web工程路径 1),在servlet可以用一下方法取得: request.getRealPath(“/”) 例如:filepach = request.getRealPath(“/” ...

  4. 11_关于SqlMapperConfig.xml

    [简述] SqlMapConfig.xml是Mybatis的全局配置文件,配置内容如下: 1.properties---------属性 2.settings-----------全局配置参数 3.t ...

  5. 自己在使用的English词典

    一.ESL/非母语词典 二.EFL/母语词典 1.American Heritage Dictionary 2.World Book Dictionary 3.Oxford Dictionary of ...

  6. 使用GitHub For Windows托管Visual Studio项目

    本文写得比较早,更新的在VS上使用GitHub的文章请移步:Visual Stuido 2015 Community 使用 GitHub 插件 因为最近同时再看很多技术方面的书,书上的例子有很多自己想 ...

  7. foreach的一点理解

    首先什么样的数据才能实现foreach 1 实现IEnumerable这个接口 2 有GetEnumerable()这个方法 然后为啥实现这个接口或者有这个方法就可以实现foreach遍历 首先我先用 ...

  8. PHP接口(interface)和抽象类(abstract)

    interface 定义了一个接口类,它里面的方法其子类必须实现.接口是类的一个模板,其子类必须实现接口中定义的所有方法. interface User{     function getHeight ...

  9. javascript进阶——面向对象特性

    面向对象的javascript是这门语言被设计出来时就考虑的问题,熟悉OOP编程的概念后,学习不同的语言都会发现不同语言的实现是不同的,javascript的面向对象特性与其他具有面向对象特性的语言的 ...

  10. C语言头文件书写

    说一下C语言的存储类说明符: 1.Auto       只在块内变量声明中被允许,表示变量具有本地生存期. 2.Extern    出现在顶层或块的外部变量函数与变量声明中,表示声明的对象具有静态生存 ...