我想了想,发现可以证明burnside定理。

置换n个元素1,2,…,n之间的一个置换表示1被1到n中的某个数a1取代,2被1到n中的某个数a2取代,直到n被1到n中的某个数an取代,且a1,a2,…,an互不相同。

置换群:置换群的元素是置换,运算是置换的连接。例如:

  可以验证置换群满足群的四个条件。

  重点是这个:│Ek│·│Zk│=│G│    k=1…n 这个我不会证明,但是很好理解:每个不动点都可以找到一个对应的置换,差不多就这个意思。

该公式的一个很重要的研究对象是群的元素个数,有很大的用处。

Zk (K不动置换类)设G是1…n的置换群。若K是1…n中某个元素,G中使K保持不变的置换的全体,记以Zk,叫做G中使K保持不动的置换类,简称K不动置换类。

Ek(等价类)设G是1…n的置换群。若K是1…n中某个元素,K在G作用下的轨迹,记作Ek。即K在G的作用下所能变化成的所有元素的集合。

  现在就可以证明了,哦,不是证明,是理解,呵呵……

  我们可以发现i所在等价类集合的大小就是Ei,可以感性地理解一下。

  有了│Ek│·│Zk│=│G│    k=1…n 这个神一样的式子,我们设有L个等价类,等价类k中有Ek个元素,每个元素有Zk个不动点,等价类k中的不动点的个数就是│Ek│·│Zk│=│G│,我们对所有等价类的不动点个数求和,得到的就是L*|G|,除以|G|就是等价类个数了。

  Pólya原理就是对求不动点个数方法的扩展,不太难哈。

我对Burnside定理的理解的更多相关文章

  1. poj 2409+2154+2888(Burnside定理)

    三道burnside入门题: Burnside定理主要理解置换群置换后每种不动点的个数,然后n种不动点的染色数总和/n为answer. 对于旋转,旋转i个时不动点为gcd(n,i). 传送门:poj ...

  2. 【Burnside定理】&【Pólya定理】

    Burnside & Pólya (详细内容请参阅<组合数学>或2008年cyx的论文,这里只写一些我学习的时候理解困难的几个点,觉得我SB的请轻鄙视……如果有觉得不科学的地方欢迎 ...

  3. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

  4. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  5. 埋锅。。。BZOJ1004-置换群+burnside定理+

    看这道题时当时觉得懵逼...这玩意完全看不懂啊...什么burnside...难受... 于是去看了点视频和资料,大概懂了置换群和burnside定理,亦步亦趋的懂了别人的代码,然后慢慢的打了出来.. ...

  6. 对CAP定理的理解

    CAP定理的常规解释是任何分布式系统只能在一致性(Consitency),可用性(Availability)和分区容忍性(Partition Tolerance)中三选二.这个解释很让人费解,笔者在看 ...

  7. Lucas定理的理解与应用

    Lucas定理:用于计算组合数模除素数后的值,其实就是把(n,m)分别表示为p进制,累乘各位的可能取的个数,得到最终的结果: 推论:(n & m) == m则C(n,m)为奇数:即C(n,m) ...

  8. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  9. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

随机推荐

  1. C#下如何用NPlot绘制期货股票K线图(3):设计要显示的股票价格图表窗口并定义相应类的成员及函数

    [内容简介] 上一篇介绍了要显示K线图所需要的数据结构,及要动态显示K线图,需要动态读取数据文件必需的几个功能函数.本篇介绍要显示蜡烛图所用到的窗口界面设计及对应类定义.下面分述如下: [窗口界面] ...

  2. 小改动,大作为——C# 4.0中的微小改动

    1.可选参数和命名实参 可选参数和命名实参就如同一对好基友,因为它们经常一起使用. 1.1 可选参数 可选参数重在“可选”,即在调用方法时,该参数可以明确指定实参,也可以不指定.如下代码所示,下面代码 ...

  3. JSP EL表达式详细介绍

    一.JSP EL语言定义 E L(Expression Language)  目的:为了使JSP写起来更加简单. 表达式语言的灵感来自于 ECMAScript 和 XPath 表达式语言,它提供了在 ...

  4. 【C++11】新特性——Lambda函数

    本篇文章由:http://www.sollyu.com/c11-new-lambda-function/ 文章列表 本文章为系列文章 [C++11]新特性--auto的使用 http://www.so ...

  5. 查找PHP的配置文件

    查找PHP的配置文件 先写了一个 <?php phpinfo();?>然后在浏览器中浏览一下(之前我百度说在Configuration File  这个位置看) 结果竟然显示 Loaded ...

  6. tmux与vim主题不一致

    在centos6.5 x64 vim6.2 需要在tmux.conf中添加set -g default-terminal "screen-256color" 然后再次启动tmux的 ...

  7. javascript 事件流及应用

    当页面元素触发事件的时候,该元素的容器以及整个页面都会按照特定顺序发生该元素的触发 事件,事件传播的顺序叫做事件流 1.事件流的分类: A.冒泡型事件(所有浏览器都支持)   由明确的事件源到最不确定 ...

  8. 解决IE6下不支持 png24的透明图片问题

    常用的两种解决方案: 第一:使用IE滤镜解决 关键代码: css代码  _background:none;_filter:progid:DXImageTransform.Microsoft.Alpha ...

  9. php练习5——简单的学生管理系统(隐藏控件的使用)

    要求:    程序:gradeManage.html和gradeManage.php          结果       注意:   1.使用隐藏控件时,得在不同表单下,不能在同一个表单下:   2. ...

  10. 如何在版本控制工具中管理Sencha Architect的項目

    根據數次痛苦的經歷結合stack overflow上的解答,發現原來還是可以使用svn.git之類的版本控制工具管理Sencha Architect生成的項目的. 具體的要點如下,假定項目記作{PRO ...