2288: 【POJ Challenge】生日礼物

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 284  Solved: 82
[Submit][Status]

Description

ftiasch 18岁生日的时候,lqp18_31给她看了一个神奇的序列 A1, A2, ..., AN. 她被允许选择不超过 M 个连续的部分作为自己的生日礼物。

自然地,ftiasch想要知道选择元素之和的最大值。你能帮助她吗?

Input

第1行,两个整数 N (1 ≤ N ≤ 105) 和 M (0 ≤ M ≤ 105), 序列的长度和可以选择的部分。

第2行, N 个整数 A1, A2, ..., AN (0 ≤ |Ai| ≤ 104), 序列。

Output

一个整数,最大的和。

Sample Input

5 2
2 -3 2 -1 2

Sample Output

5

HINT

Source

题解:

感觉和数据备份这题有点像,但是又转化不过来。。。看了hzwer的题解之后恍然大悟了。。。

首先连在一块的正负相同的肯定可以看成一个点,然后我们就得到了一个正负交替的数列,并且首位两项都是正数(负数去掉)

然后如果正的项数<=m,那显然我们全部选走就获得了最大权值,否则我们需要做一点牺牲。

1)不选某些正项

2)选一些负项使得相邻的正项成为1块

记所有正数之和为sum,我们需要进行上面两种操作使得sum减掉的数最小并且满足只有m块。

我们把所有数的绝对值放入一个堆,每次取最小元素x。sum'-=x

那么如果该数原来是正的,意思是不选它;

如果是负的,意思是把它两边的正数合并。

但直接这样做是不行的,我们必须保证取负的时候两边的正的必须不被取,取正的时候两边的负的不被取。

换句话说,不能选择相邻的两个数!我们成功的将此题转化成了数据备份问题。

orz!

代码:

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 100000+5

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
int n,k,s,t,ans,a[maxn],b[maxn],l[maxn],r[maxn];
priority_queue<pa,vector<pa>,greater<pa> >q; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); t=read();k=read();
for1(i,t)a[i]=read();while(a[t]<=)t--;
s=;while(a[s]<=)s++;
for(;s<=t;s++)if((a[s]>&&a[s-]>)||(a[s]<=&&a[s-]<=))b[n]+=a[s];else b[++n]=a[s];
for1(i,n)if(b[i]>){ans+=b[i];k--;}else b[i]=-b[i];
if(k>=){cout<<ans<<endl;return ;}
for1(i,n)l[i]=i-,r[i]=i+,q.push(pa(b[i],i));
r[n]=;
for1(i,abs(k))
{
while(b[q.top().second]!=q.top().first)q.pop();
int x=q.top().second;q.pop();
ans-=b[x];
if(!l[x]){b[r[x]]=inf;l[r[x]]=;}
else if(!r[x]){b[l[x]]=inf;r[l[x]]=;}
else
{
b[x]=b[l[x]]+b[r[x]]-b[x];
b[l[x]]=b[r[x]]=inf;
r[l[x]=l[l[x]]]=l[r[x]=r[r[x]]]=x;
q.push(pa(b[x],x));
}
}
cout<<ans<<endl; return ; }

还有一点,之所以赋删去的点的权值为inf是为了不用手打堆,erase233

BZOJ2288: 【POJ Challenge】生日礼物的更多相关文章

  1. [bzoj2288][POJ Challenge]生日礼物

    用堆维护双向链表来贪心... 数据范围显然不容许O(nm)的傻逼dp>_<..而且dp光是状态就n*m个了..显然没法优化 大概就会想到贪心乱搞了吧...一开始想贪心地通过几段小的负数把正 ...

  2. BZOJ3502PA2012Tanie linie&BZOJ2288[POJ Challenge]生日礼物——模拟费用流+链表+堆

    题目描述 n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. 输入 输出 样例输入 5 2 7 -3 4 -9 5 样例输出 13   根据 ...

  3. BZOJ2288:[POJ Challenge]生日礼物——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2288 ftiasch 18岁生日的时候,lqp18_31给她看了一个神奇的序列 A1, A2, . ...

  4. BZOJ2288:[POJ Challenge]生日礼物

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?id ...

  5. bzoj2288【POJ Challenge】生日礼物*

    bzoj2288[POJ Challenge]生日礼物 题意: 给一个序列,求不超过m个连续的部分,使元素和最大.序列大小≤100000 题解: 先把连续的正数和负数合并起来,接着如果正数个数小于m则 ...

  6. [bzoj2288]【POJ Challenge】生日礼物_贪心_堆

    [POJ Challenge]生日礼物 题目大意:给定一个长度为$n$的序列,允许选择不超过$m$个连续的部分,求元素之和的最大值. 数据范围:$1\le n, m\le 10^5$. 题解: 显然的 ...

  7. 2288.【POJ Challenge】生日礼物 链表+堆+贪心

    BZOJ2288 [POJ Challenge]生日礼物 题意: 给一个长度为\(n\)的数组,最多可以选\(m\)个连续段,问选取的最大值是多少 题解: 先把连续的符号相同的值合并,头和尾的负数去掉 ...

  8. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  9. bzoj 2288 【POJ Challenge】生日礼物 双向链表+堆优化

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1003  Solved: 317[Submit][ ...

随机推荐

  1. Use excel Macro export data from database

    Sub DownLoadMacro() '定义过程名称 Dim i As Integer, j As Integer, sht As Worksheet 'i,j为整数变量:sht 为excel工作表 ...

  2. TCP调试助手

    网络开发经常要用到一些TCP&UDP的调试工具,搜集一些备用. 目前总结工具有(不分先后): chrome等自带调试器调试HTTP Fiddler(.NET)和Charles debugger ...

  3. Library cache lock 故障解决一例

    今天收到同事电话,说是数据库中一张名为acct_balance进行操作是奇慢,第一反映是不是扫行计划有问题,结果我错了,现将过程记录下来. 用pl/sql连上数据库情况:1.对acct_balance ...

  4. 经历:easyui的datagrid没有数据滚动条的显示

    今天,一个用户提出一个这样的问题,"查询不到结果时,为什么我看不到后面的标题呢?" 最初,我听到这个问题时,第一反应是:查出来数据不就有滚动条了吗,干嘛非要较真呢? 不过,后来想想 ...

  5. c# web页面乱码

    1.在web.config中加入:<globalization requestEncoding="GB2312" responseEncoding="GB2312& ...

  6. PHP pear安装出现 Warning: require_once(Structures/Graph.php)...错误

    今天在WINDOWS安装pear,一路无阻很顺利安装完成,接着想安装下pear email包来玩下,但接下来却报: Warning: require_once(Structures/Graph.php ...

  7. 百度UEditor(富文本编辑器)的基础用法

    百度的这个编辑器挺强大的,这里只是用他的文本功能,没有介绍上传图片视频的. 我用是的SSH来写的项目. 1. 把下载的UEditor(ueditor1_4_3_1-utf8-jsp)解压后全部复制到W ...

  8. 24种设计模式--责任链模式【Chain ofResponsibility Pattern】

    中国古代对妇女制定了“三从四德”的道德规范,“三从”是指“未嫁从父.既嫁从夫.夫死从子”,也就是说一个女性,在没有结婚的时候要听从于父亲,结了婚后听从于丈夫,丈夫死了还要听儿子的,举个例子来说,一个女 ...

  9. php购物车原理

    <?php/*购物车原理在产品展示页面时(如 shop.php?id=888),点击购买或添加到购物车时,根据相应的产品标识符(如 id),查询相应的数据库,如果查询表示有此产品,用 $_SES ...

  10. [转载]5分钟了解Mockito

    原文链接: http://liuzhijun.iteye.com/blog/1512780/ 5分钟了解Mockito 博客分类: Open SourceJava 一.什么是mock测试,什么是moc ...