HDU-4810-wall Painting(二进制, 组合数)
链接:
https://vjudge.net/problem/HDU-4810
题意:
Ms.Fang loves painting very much. She paints GFW(Great Funny Wall) every day. Every day before painting, she produces a wonderful color of pigments by mixing water and some bags of pigments. On the K-th day, she will select K specific bags of pigments and mix them to get a color of pigments which she will use that day. When she mixes a bag of pigments with color A and a bag of pigments with color B, she will get pigments with color A xor B.
When she mixes two bags of pigments with the same color, she will get color zero for some strange reasons. Now, her husband Mr.Fang has no idea about which K bags of pigments Ms.Fang will select on the K-th day. He wonders the sum of the colors Ms.Fang will get with different plans.
For example, assume n = 3, K = 2 and three bags of pigments with color 2, 1, 2. She can get color 3, 3, 0 with 3 different plans. In this instance, the answer Mr.Fang wants to get on the second day is 3 + 3 + 0 = 6.
Mr.Fang is so busy that he doesn’t want to spend too much time on it. Can you help him?
You should tell Mr.Fang the answer from the first day to the n-th day.
思路:
将整数转换为二进制存储,每次对二进制的每一位选择,选择奇数个1,xor出来才有值.
每次组合数枚举可选的整数.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string>
#include <assert.h>
#include <iomanip>
#define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 1e3+10;
const int MOD = 1e6+3;
LL a[MAXN];
LL C[MAXN][MAXN];
LL Num[100];
int n;
int main()
{
C[0][0] = 1;
C[1][0] = C[1][1] = 1;
for (int i = 2;i < MAXN;i++)
{
C[i][0] = C[i][i] = 1;
for (int j = 1;j < i;j++)
C[i][j] = (C[i-1][j]+C[i-1][j-1])%MOD;
}
ios::sync_with_stdio(false);
cin.tie(0);
int t;
while (cin >> n)
{
memset(Num, 0, sizeof(Num));
for (int i = 1;i <= n;i++)
{
LL v;
int cnt = 0;
cin >> v;
while (v)
{
Num[cnt++] += v%2;
v >>= 1;
}
}
for (int i = 1;i <= n;i++)
{
LL res = 0;
for (int j = 31;j >= 0;j--)
{
LL tmp = 0;
for (int k = 1;k <= i;k += 2)
tmp = (tmp + (1LL*C[Num[j]][k]*C[n-Num[j]][i-k])%MOD)%MOD;
res = (res + (1LL*tmp*(1LL<<j))%MOD)%MOD;
}
if (i == n)
cout << res;
else
cout << res << ' ' ;
}
cout << endl;
}
return 0;
}
HDU-4810-wall Painting(二进制, 组合数)的更多相关文章
- hdu 4810 Wall Painting (组合数+分类数位统计)
Wall Painting Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 4810 Wall Painting
Wall Painting Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- hdu 4810 Wall Painting (组合数学+二进制)
题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...
- HDU - 4810 - Wall Painting (位运算 + 数学)
题意: 从给出的颜料中选出天数个,第一天选一个,第二天选二个... 例如:第二天从4个中选出两个,把这两个进行异或运算(xor)计入结果 对于每一天输出所有异或的和 $\sum_{i=1}^nC_{n ...
- hdu-4810 Wall Painting(组合数学)
题目链接: Wall Painting Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu 1348 Wall(凸包模板题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others) M ...
- hdu 5648 DZY Loves Math 组合数+深搜(子集法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5648 题意:给定n,m(1<= n,m <= 15,000),求Σgcd(i|j,i&am ...
- POJ 1113 || HDU 1348: wall(凸包问题)
传送门: POJ:点击打开链接 HDU:点击打开链接 以下是POJ上的题: Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissio ...
- HDU 2502 月之数(二进制,规律)
月之数 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
随机推荐
- 菲律宾薄荷岛游记 & 攻略
2019年的4月跑去薄荷岛玩了!其实是一个比较小众的海岛,感觉那边还是比较穷的,但是景色真的好好啊!而且我们两个人,最后包括前期买水母服.浮潜面罩.防晒霜什么的,总共花费才人均5000+,非常划算了! ...
- java:Oracle(Jdbc的封装)和HTML(登录,注册,个人信息界面)
1.Oracle Jdbc的封装: public class TestJdbc { // 把jdbc需要的属性,全部私有化 private static final String DRIVER = & ...
- Golang的面向对象编程【结构体、方法、继承、接口】
Golang也支持面向对象编程.但与以前学过传统的面向对象编程语言有区别.1)Golang没有类class,Go语言的结构体struct和类class有相似的特性.2)Golang中不存在继承,方法重 ...
- python文档的数据读取,把读取数据写入到新的表里
目的:接口自动化过程需要从表格文件读取,然后把结果写到表格中.没有多余内容全部是精华! 读取文件1 读取文件2 代码如下图: # -*-coding:utf-8 -*-# Author:wangjun ...
- 《Python编程从0到1》笔记3——欧几里得算法
本节以欧几里得算法(这是人类历史上最早记载的算法)为示例,向读者展示注释.文档字符串(docstring).变量.循环.递归.缩进以及函数定义等Python语法要素. 欧几里得算法:“在数学中, ...
- Solrcloud单机伪集群部署
线上有一套双节点的Solrcloud节点,因机器性能较老,环境搭建于2013年,原节点有数百个已经被unload的collections,考虑以后可能还会需要,所以搭建一套和原节点相同的solrclo ...
- [转帖]「白帽黑客成长记」Windows提权基本原理(下)
「白帽黑客成长记」Windows提权基本原理(下) https://www.cnblogs.com/ichunqiu/p/10968674.html 提权.. 之前还在想 为什么 我的 sqlserv ...
- 极*Java速成教程 - (1)
序言 众所周知,程序员需要快速学习新知识,所以就有了<21天精通C++>和<MySQL-从删库到跑路>这样的书籍,Java作为更"高级"的语言也不应该落后, ...
- 洛谷 P2331 最大子矩阵 题解
题面 对于m==1和m==2两种状态进行不同的dp: 设sum[i][1]表示第一列的前缀和,sum[i][2]表示第二列的前缀和: sum[i][1]=sum[i-1][1]+a[i][1]; su ...
- P1115 最大子段和(简单DP)
题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入格式 第一行是一个正整数NN,表示了序列的长度. 第二行包含NN个绝对值不大于1000010000的整数A_iAi,描述了这段序 ...