题面

传送门

分析

容易想到根据点来dp,设dp[i][j]表示到i点路径长度为j的方案数

状态转移方程为dp[i][k]=∑(i,j)∈Edp[j][k−1]" role="presentation" style="position: relative;">dp[i][k]=∑(i,j)∈Edp[j][k−1]dp[i][k]=∑(i,j)∈Edp[j][k−1]

但这样得出的结果是错误的,因为它没有考虑一个点经过多次的情况

因此,我们按边来dp,因为每条边只能经过一次,所以不会出现上面的问题

将每条无向边拆成两条有向边

设dp[i][j]表示当前走到到编号为i的边路径长度为j的方案数

dp[i][k]=∑from[i]=to[j],i与j为不为一对反向边dp[j][k−1]" role="presentation" style="position: relative;">dp[i][k]=∑from[i]=to[j],i与j为不为一对反向边dp[j][k−1]dp[i][k]=∑from[i]=to[j],i与j为不为一对反向边dp[j][k−1]

这样的时间复杂度为O(tm)" role="presentation" style="position: relative;">O(tm)O(tm),显然是会超时的

注意到矩阵乘法优化dp的条件

前一个阶段到后一个阶段的映射是线性的,并且这个映射是不变的

此题中k为阶段,可以发现映射显然是不变的常量

我们用一个m×m" role="presentation" style="position: relative;">m×mm×m矩阵

对于边i,j如果满足to[i] == from[j] &&i,j不为反向边这个条件,那么(i,j)是1,反之就是0

初始的矩阵为1×m" role="presentation" style="position: relative;">1×m1×m的矩阵,对于从起点出发的每一条边i,我们将(1,i)设为1,反之为0.

对于答案矩阵,我们枚举指向终点的每一条边,将它在矩阵中对应位置的值相加即可

时间复杂度O(m3log2t)" role="presentation" style="position: relative;">O(m3log2t)O(m3log2t)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 45989
#define maxn 45
#define maxm 65
#define maxs maxm*2
using namespace std;
int n,m,k,s,t;
struct edge{
int from;
int to;
int next;
}E[maxm<<1];
int head[maxn];
int sz=1;//从1开始存储,则第i条边的反向边编号为i^1
void add_edge(int u,int v){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
head[u]=sz;
} struct matrix{
int n;
int m;
long long a[maxs][maxs];
void print(){
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d ",a[i][j]);
}
printf("\n");
}
printf("\n");
}
matrix(){
memset(a,0,sizeof(a));
}
matrix(int x,int y){
n=x;
m=y;
memset(a,0,sizeof(a));
}
friend matrix operator *(matrix u,matrix v){
matrix ans=matrix(u.n,v.m);
for(int i=1;i<=u.n;i++){
for(int j=1;j<=v.m;j++){
for(int k=1;k<=u.m;k++){
ans.a[i][j]+=u.a[i][k]*v.a[k][j]%mod;
}
ans.a[i][j]%=mod;
}
}
return ans;
}
};
matrix fast_pow(matrix x,int k){
matrix ans=matrix(x.n,x.m);
for(int i=1;i<=x.n;i++){
ans.a[i][i]=1;
}
while(k){
if(k&1) ans=ans*x;
x=x*x;
k>>=1;
}
return ans;
}
int main(){
scanf("%d %d %d %d %d",&n,&m,&k,&s,&t);
int u,v;
for(int i=1;i<=m;i++){
scanf("%d %d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
matrix f=matrix(sz,sz),p=matrix(sz,sz);
for(int i=head[s];i;i=E[i].next){
f.a[1][i]=1;
}
for(int i=2;i<=sz;i++){
for(int j=2;j<=sz;j++){
if(E[i].to==E[j].from&&i!=(j^1)){
p.a[i][j]=1;
}
}
}
// f.print();
// p.print();
f=f*fast_pow(p,k-1);
// f.print();
long long ans=0;
for(int i=head[t];i;i=E[i].next){
ans=ans+f.a[1][i^1];
ans%=mod;
}
printf("%lld\n",ans%mod);
}

BZOJ 1875(DP+矩阵快速幂)的更多相关文章

  1. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  2. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  3. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  4. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  5. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  6. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  7. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  8. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  9. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

随机推荐

  1. 安装mod_rpaf让apache获取访客真实IP

    安装mod_rpaf让apache获取访客真实IP 安装mod_rpaf让apache获取访客真实IP 作者:朱 茂海 /分类:Apache  字号:L M S     mod_rpaf是apache ...

  2. vue组件结构

    1.组件结构 2.项目结构

  3. Sublime Text3 使用Package Control 报错There Are No Packages Available For Installation 解决

    "channels": [ "https://packagecontrol.io/channel_v3.json"], 无法连接的问题 网上说了挺多原因,简单例 ...

  4. Git 使用的问题总结

    1.git stash pop 显示 xxx already exists, no checkout 当我们先使用 git stash save -u '保存信息说明' 来储藏更改,然后拉取代码 gi ...

  5. 安装k8s集群(亲测)

    先安装一台虚拟机,然后进行克隆,因为前面的步骤都是一样的,具体代码如下: Last login: Mon Nov 25 00:40:34 2019 from 192.168.180.1 ##安装依赖包 ...

  6. 算法题常见的BUG错误(总结)

    1. 快排的partition if(l >= r) return ; int i = l, j = r; int tmp = v[i]; while(i < j) { while(i & ...

  7. 3D Computer Grapihcs Using OpenGL - 08 Text File Shaders

    使用之前的方法写Shader是一件很痛苦的事情,把Shader代码直接卸载C++文件中,需要使用很多引号来包裹,既不美观也不方便. 我们这节的目的是使用纯文本文件保存Shader. 首先在工程中创建两 ...

  8. 个推基于 Zipkin 的分布式链路追踪实践

    作者:个推应用平台基础架构高级研发工程师 阿飞   01业务背景   随着微服务架构的流行,系统变得越来越复杂,单体的系统被拆成很多个模块,各个模块通过轻量级的通信协议进行通讯,相互协作,共同实现系统 ...

  9. mui初级入门教程(七)— 基于native.js的文件系统管理功能实现

    文章来源:小青年原创发布时间:2016-08-01关键词:mui,nativejs,android转载需标注本文原始地址: http://zhaomenghuan.github.io... 前言 这段 ...

  10. uva live 7639 Extreme XOR Sum (暴力+二项式)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...