题面

传送门

分析

容易想到根据点来dp,设dp[i][j]表示到i点路径长度为j的方案数

状态转移方程为dp[i][k]=∑(i,j)∈Edp[j][k−1]" role="presentation" style="position: relative;">dp[i][k]=∑(i,j)∈Edp[j][k−1]dp[i][k]=∑(i,j)∈Edp[j][k−1]

但这样得出的结果是错误的,因为它没有考虑一个点经过多次的情况

因此,我们按边来dp,因为每条边只能经过一次,所以不会出现上面的问题

将每条无向边拆成两条有向边

设dp[i][j]表示当前走到到编号为i的边路径长度为j的方案数

dp[i][k]=∑from[i]=to[j],i与j为不为一对反向边dp[j][k−1]" role="presentation" style="position: relative;">dp[i][k]=∑from[i]=to[j],i与j为不为一对反向边dp[j][k−1]dp[i][k]=∑from[i]=to[j],i与j为不为一对反向边dp[j][k−1]

这样的时间复杂度为O(tm)" role="presentation" style="position: relative;">O(tm)O(tm),显然是会超时的

注意到矩阵乘法优化dp的条件

前一个阶段到后一个阶段的映射是线性的,并且这个映射是不变的

此题中k为阶段,可以发现映射显然是不变的常量

我们用一个m×m" role="presentation" style="position: relative;">m×mm×m矩阵

对于边i,j如果满足to[i] == from[j] &&i,j不为反向边这个条件,那么(i,j)是1,反之就是0

初始的矩阵为1×m" role="presentation" style="position: relative;">1×m1×m的矩阵,对于从起点出发的每一条边i,我们将(1,i)设为1,反之为0.

对于答案矩阵,我们枚举指向终点的每一条边,将它在矩阵中对应位置的值相加即可

时间复杂度O(m3log2t)" role="presentation" style="position: relative;">O(m3log2t)O(m3log2t)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 45989
#define maxn 45
#define maxm 65
#define maxs maxm*2
using namespace std;
int n,m,k,s,t;
struct edge{
int from;
int to;
int next;
}E[maxm<<1];
int head[maxn];
int sz=1;//从1开始存储,则第i条边的反向边编号为i^1
void add_edge(int u,int v){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
head[u]=sz;
} struct matrix{
int n;
int m;
long long a[maxs][maxs];
void print(){
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d ",a[i][j]);
}
printf("\n");
}
printf("\n");
}
matrix(){
memset(a,0,sizeof(a));
}
matrix(int x,int y){
n=x;
m=y;
memset(a,0,sizeof(a));
}
friend matrix operator *(matrix u,matrix v){
matrix ans=matrix(u.n,v.m);
for(int i=1;i<=u.n;i++){
for(int j=1;j<=v.m;j++){
for(int k=1;k<=u.m;k++){
ans.a[i][j]+=u.a[i][k]*v.a[k][j]%mod;
}
ans.a[i][j]%=mod;
}
}
return ans;
}
};
matrix fast_pow(matrix x,int k){
matrix ans=matrix(x.n,x.m);
for(int i=1;i<=x.n;i++){
ans.a[i][i]=1;
}
while(k){
if(k&1) ans=ans*x;
x=x*x;
k>>=1;
}
return ans;
}
int main(){
scanf("%d %d %d %d %d",&n,&m,&k,&s,&t);
int u,v;
for(int i=1;i<=m;i++){
scanf("%d %d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
matrix f=matrix(sz,sz),p=matrix(sz,sz);
for(int i=head[s];i;i=E[i].next){
f.a[1][i]=1;
}
for(int i=2;i<=sz;i++){
for(int j=2;j<=sz;j++){
if(E[i].to==E[j].from&&i!=(j^1)){
p.a[i][j]=1;
}
}
}
// f.print();
// p.print();
f=f*fast_pow(p,k-1);
// f.print();
long long ans=0;
for(int i=head[t];i;i=E[i].next){
ans=ans+f.a[1][i^1];
ans%=mod;
}
printf("%lld\n",ans%mod);
}

BZOJ 1875(DP+矩阵快速幂)的更多相关文章

  1. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  2. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  3. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  4. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  5. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  6. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  7. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  8. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  9. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

随机推荐

  1. Eclipse Debug模式的开启与关闭问题简析_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 默认情况下,eclipse中右键debug,当运行到设置的断点时会自动跳到debug模式下.但由于我的eclipse环境 ...

  2. .Net 网站配置文件 webconfig 配置。 字体图标+视频播放 以及 文件上传

    ASP.NET MVC 上传大文件时404 原来IIS7的上传文件大小,即便是在经典模式下,也一定要在system.webServer里设置,加上去就OK了 <system.webServer& ...

  3. rocketmq特性(features)

    # 特性(features) 1 订阅与发布 消息的发布是指某个生产者向某个topic发送消息:消息的订阅是指某个消费者关注了某个topic中带有某些tag的消息,进而从该topic消费数据. 2 消 ...

  4. 最大 k 乘积问题 ( 经典区间DP )

    题意 : 设 NUM 是一个 n 位十进制整数.如果将 NUM 划分为 k 段,则可得到 k 个整数.这 k 个整数的乘积称为 NUM 的一个 k 乘积.试设计一个算法,对于给定的 NUM 和 k,求 ...

  5. 又联考了一场,感觉自己好菜啊,T1没写出来,后来花了一个早上调试。QAQ。最后发现是个-1还有取模没打。。。TAT。。。难受极了!!!

    简单的区间(interval) 题目描述: 样例输入: 样例1: 4 3 1 2 3 4 样例2: 4 2 4 4 7 4 样例输出: 样例1: 3 样例2: 6 提示: 时间限制:1000ms 空间 ...

  6. 小波神经网络(WNN)

    人工神经网络(ANN) 是对人脑若干基本特性通过数学方法进行的抽象和模拟,是一种模仿人脑结构及其功能的非线性信息处理系统. 具有较强的非线性逼近功能和自学习.自适应.并行处理的特点,具有良好的容错能力 ...

  7. 利用域凭据:解密GPP中的管理员密码

    在利用域凭据过程中,除了通过Mimikatz和WCE从内存读取明文密码外,还可以通过域共享文件夹SYSVOL组策略文件获取哈希码. 组策略首选项(Group Policy Preference, GP ...

  8. SQL ORDER BY 两个列

    ORDER BY  后可加2个字段,用英文逗号隔开. f1用升序, f2降序,sql该这样写 ORDER BY  f1, f2  DESC 也可以这样写,更清楚: ORDER BY  f1 ASC, ...

  9. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第3节 Random类_11-练习二_猜数字小游

    0到100之间的数字.猜多少次才能猜对最终的结果.大了或者小了都会告诉你. 二分法查找. 循环次数不确定用whilte true的方式去循环 前两种情况是需要重试的 把猜测的代码放在whilte循环里 ...

  10. k8s创建资源

        一.创建方式分类: 命令 vs 配置文件 Kubernetes 支持两种方式创建资源:   1.用 kubectl 命令直接创建(适用于少数的pod创建) kubectl run httpd- ...