分析

考虑使用欧拉函数的计算公式化简原式,因为有:

\[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... \times p_m^{q_{m\ max}}
\]

其实就是分解质因数,丢到那个式子里:

\[\varphi(lcm(i_1,i_2,...,i_k))=\prod (p_i-1)p_i^{q_{i\ max}-1}
\]

容易发现可以分开讨论每个质数,计算每个\(p_i^j\)在多少种\(i_1 \sim i_k\)的取值方案中作为某一项的倍数出现,这里可以容斥做,然后把产生的贡献乘到答案里即可。质数取模的话,不是有扩展欧拉定理嘛,模个\(1e9+6\)就好了。

时间复杂度?不知道,大概在\(O(n) \sim O(nlogn)\)之间吧。

代码

int main(){
n=read(),k=read();
pre_process();//这个是筛质数
int tot=qpow(n,k,MOD-1);
rin(i,1,cnt){
int p=prm[i],temp=n/p;
ans=1ll*ans*qpow(p-1,(tot-qpow(n-temp,k,MOD-1)+MOD-1)%(MOD-1),MOD)%MOD;
while(1){
temp/=p;if(!temp) break;
ans=1ll*ans*qpow(p,(tot-qpow(n-temp,k,MOD-1)+MOD-1)%(MOD-1),MOD)%MOD;
}
}
printf("%d\n",ans);
return 0;
}

[洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理的更多相关文章

  1. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  2. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 洛谷$P1390$ 公约数的和 欧拉函数

    正解:欧拉函数 解题报告: 传送门$QwQ$ 首先显然十分套路地变下形是趴 $\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&= ...

  4. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  5. 【洛谷 UVA11417】 GCD(欧拉函数)

    我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\).为什么减1呢,观察题目,发现\(j=i+1\ ...

  6. 洛谷P1170 兔八哥与猎人 欧拉函数的应用

    https://www.luogu.org/problem/P1170 #include<bits/stdc++.h> using namespace std; ],b[],c[],d[] ...

  7. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

  8. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

随机推荐

  1. 红帽学习笔记[RHCSA] 第一周

    目录 红帽学习笔记[RHCSA] 环境 第一课 关于Shell 命令的基础知识 在终端中敲命令的快捷键 本次课程涉及的命令 第二课 常用的目录结构与用途 本次课程涉及到的命令 第三课 关于Linux的 ...

  2. 自定义SpringBoot启动控制台图标

    使用过SpringBoot的小伙伴众所周知,在启动的过程中,在控制台会首先打印spring的图标以及版本号(这里以IDEA为例) 如果需要更改这个打印图标的话, 需要以下步骤: 1.打开SpringB ...

  3. make the fence great again(dp 二维)

    D. Make The Fence Great Again time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. Maven项目的常用jar包

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  5. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  6. 搜索专题: HDU1027Ignatius and the Princess II

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  7. 逆向与反汇编实战(一)--PEiD分析复现

    1.准备 简介: PEiD(PE Identifier)是一款著名的查壳工具,其功能强大,几乎可以侦测出所有的壳,其数量已超过470 种PE 文档 的加壳类型和签名. 整个过程需要测试文件成品:htt ...

  8. 封装class类--分割类名后

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. Django模板层2

    一.单表操作 1.1 开启test from django.test import TestCase import os # Create your tests here. if __name__ = ...

  10. Linux vim程序编辑器

    Tips: 在 vi 里面, [tab] 这个按钮所得到的结果与空格符所得到的结果是不一样的,特别强调一下! 一般模式 移动光标 30↓ 向下移动30行 40→ 向右移动40个字符 gg 移动到档案第 ...