打算写一个多项式总结。

虽然自己菜得太真实了。

好像四级标题太小了,下次写博客的时候再考虑一下。

模板

\(FFT\)模板

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL; inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
} const int MAXN=1000005;
const int MAXLEN=2100005;
const double pi=std::acos(-1);
int n,m;
int len,rev[MAXLEN];
struct Complex{
double real,imag;
inline friend Complex operator + (Complex x,Complex y){
return (Complex){x.real+y.real,x.imag+y.imag};
}
inline friend Complex operator - (Complex x,Complex y){
return (Complex){x.real-y.real,x.imag-y.imag};
}
inline friend Complex operator * (Complex x,Complex y){
return (Complex){x.real*y.real-x.imag*y.imag,x.real*y.imag+x.imag*y.real};
}
};
Complex A[MAXLEN],B[MAXLEN]; inline void fft(Complex *c,int dft){
rin(i,0,n-1) if(i<rev[i])
std::swap(c[i],c[rev[i]]);
for(int mid=1;mid<n;mid<<=1){
int r=(mid<<1);
Complex u=(Complex){std::cos(pi/mid),dft*std::sin(pi/mid)};
for(int l=0;l<n;l+=r){
Complex v=(Complex){1,0};
for(int i=0;i<mid;i++,v=v*u){
Complex x=c[l+i],y=c[l+mid+i]*v;
c[l+i]=x+y;
c[l+mid+i]=x-y;
}
}
}
if(dft<0) rin(i,0,n-1)
c[i].real/=n;
} int main(){
n=read(),m=read();
rin(i,0,n) A[i].real=read();
rin(i,0,m) B[i].real=read();
m+=n;
for(n=1;n<=m;n<<=1) len++;
rin(i,1,n-1) rev[i]=((rev[i>>1]>>1)|((i&1)<<(len-1)));
fft(A,1);
fft(B,1);
rin(i,0,n-1) A[i]=A[i]*B[i];
fft(A,-1);
rin(i,0,m) printf("%d ",(int)(A[i].real+0.5));
printf("\n");
return 0;
}

\(NTT\)模板

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL; inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
} const int MAXN=1000005;
const int MAXLEN=2100005;
const LL MOD=998244353,G=3,INVG=332748118;
int n,m,invn;
int len,rev[MAXLEN];
LL A[MAXLEN],B[MAXLEN]; inline LL qpow(LL x,LL y){
LL ret=1,tt=x%MOD;
while(y){
if(y&1) ret=ret*tt%MOD;
tt=tt*tt%MOD;
y>>=1;
}
return ret;
} inline void ntt(LL *c,int dft){
rin(i,0,n-1) if(i<rev[i])
std::swap(c[i],c[rev[i]]);
for(int mid=1;mid<n;mid<<=1){
int r=(mid<<1);
LL u=qpow(dft>0?G:INVG,(MOD-1)/r);
for(int l=0;l<n;l+=r){
LL v=1;
for(int i=0;i<mid;i++,v=v*u%MOD){
LL x=c[l+i],y=c[l+mid+i]*v%MOD;
c[l+i]=x+y;
if(c[l+i]>=MOD) c[l+i]-=MOD;
c[l+mid+i]=x-y;
if(c[l+mid+i]<0) c[l+mid+i]+=MOD;
}
}
}
if(dft<0) rin(i,0,n-1)
c[i]=c[i]*invn%MOD;
} int main(){
n=read(),m=read();
rin(i,0,n) A[i]=read();
rin(i,0,m) B[i]=read();
m+=n;
for(n=1;n<=m;n<<=1) len++;
rin(i,1,n-1) rev[i]=((rev[i>>1]>>1)|((i&1)<<(len-1)));
invn=qpow(n,MOD-2);
ntt(A,1);
ntt(B,1);
rin(i,0,n-1) A[i]=A[i]*B[i]%MOD;
ntt(A,-1);
rin(i,0,m) printf("%lld ",A[i]);
printf("\n");
return 0;
}

\(FWT\)模板

前方毒瘤码风警告!!!

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#define rin(i,a,b) for(int i=(a);i<=(b);i++)
#define rec(i,a,b) for(int i=(a);i>=(b);i--)
#define trav(i,a) for(int i=head[(a)];i;i=e[i].nxt)
using std::cin;
using std::cout;
using std::endl;
typedef long long LL; inline int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x;
} const int MAXN=135005;
const int MOD=998244353;
const int INV2=499122177;
int n;
int len;
int a[MAXN],b[MAXN];
int A[MAXN],B[MAXN],C[MAXN],D[MAXN]; inline void fwt(int *c,const char *s,int opt){
for(int mid=1;mid<n;mid<<=1){
int r=(mid<<1);
for(int l=0;l<n;l+=r){
for(int i=0;i<mid;i++){
if(s=="or"){
if(opt>0){
c[l+mid+i]+=c[l+i];
if(c[l+mid+i]>=MOD) c[l+mid+i]-=MOD;
}
else{
c[l+mid+i]-=c[l+i];
if(c[l+mid+i]<0) c[l+mid+i]+=MOD;
}
}
else if(s=="and"){
if(opt>0){
c[l+i]+=c[l+mid+i];
if(c[l+i]>=MOD) c[l+i]-=MOD;
}
else{
c[l+i]-=c[l+mid+i];
if(c[l+i]<0) c[l+i]+=MOD;
}
}
else{
LL x=c[l+i],y=c[l+mid+i];
c[l+i]=x+y;
c[l+mid+i]=x-y;
if(opt<0){
c[l+i]=1ll*c[l+i]*INV2%MOD;
c[l+mid+i]=1ll*c[l+mid+i]*INV2%MOD;
}
if(c[l+i]>=MOD) c[l+i]-=MOD;
if(c[l+mid+i]<0) c[l+mid+i]+=MOD;
}
}
}
}
} int main(){
len=read();
n=(1<<len);
rin(i,0,n-1) A[i]=B[i]=C[i]=a[i]=read();
rin(i,0,n-1) D[i]=b[i]=read();
fwt(A,"or",1);
fwt(D,"or",1);
rin(i,0,n-1) A[i]=1ll*A[i]*D[i]%MOD;
fwt(A,"or",-1);
rin(i,0,n-1) D[i]=b[i];
fwt(B,"and",1);
fwt(D,"and",1);
rin(i,0,n-1) B[i]=1ll*B[i]*D[i]%MOD;
fwt(B,"and",-1);
rin(i,0,n-1) D[i]=b[i];
fwt(C,"xor",1);
fwt(D,"xor",1);
rin(i,0,n-1) C[i]=1ll*C[i]*D[i]%MOD;
fwt(C,"xor",-1);
rin(i,0,n-1) printf("%d ",A[i]);
printf("\n");
rin(i,0,n-1) printf("%d ",B[i]);
printf("\n");
rin(i,0,n-1) printf("%d ",C[i]);
printf("\n");
return 0;
}

\(FFT/NTT/FWT\)的关键

找到在同一条件下的不变量,让其成为两个多项式卷积时下标的目标。

\(FFT/NTT\)习题

[BZOJ2179]FFT快速傅立叶

\(FFT\)优化高精乘,因为没有取模的问题所以可能在这里\(NTT\)的常数要优于\(FFT\)。

[BZOJ2194]快速傅立叶之二

将\(b\)数组\(reverse()\),发现原来的式子变成了:

\[C[k]=\sum(a[i] \times b[n+k-1-i])
\]

这是一个卷积的形式,\(FFT\)即可。

[BZOJ3527]力

博主之前的博客写过。链接

[BZOJ3160]万径人踪灭

我 卷 我 自 己

分别计算\(a\)和\(b\)对答案的贡献,然后\(Manacher\)减掉不合法的方案。

[BZOJ4503]两个串

[BZOJ2194]快速傅立叶之二出发,判断两个字符串是否匹配可以通过作差后平方转化为卷积的形式。由于通配符的存在外面还需要再乘一个\(T[i]\)。

[BZOJ4827][Hnoi2017]礼物

\(c\)的最优值一定为二次函数顶点,剩下的就是一个卷积了。

[HDU4609]3-idiots

先把生成函数搞出来,用\(FFT\)乘起来,把不合法的减去即可。

[BZOJ3625][Codeforces Round #250]小朋友和二叉树

跟据题意一波分析可得:

\[F(x) \equiv F(x)^2 \times G(x)+1\ (mod\ x^{m+1})
\]

\(G(x)\)是\(c\)的生成函数。

一元二次方程的求根公式搞上去,多项式开方加多项式求逆计算答案。

[BZOJ3509][CodeChef]COUNTARI

式子可以化为:

\[2 \times A[j]=A[i]+A[k]
\]

分块,块外\(FFT\),块内暴力即可。

[BZOJ3771]Triple

Something about 一般型生成函数里面讲过。

[UVA12633]Super Rooks on Chessboard

发现一条对角线可以用行标和列标的差表示,这令我们又想到了[BZOJ2194]快速傅立叶之二。可以将列标翻转,先只考虑棋子对整行和整列的影响,构造两个多项式,分别表示整行和整列的覆盖情况,如果一行或一列上没有棋子,那么对应多项式的相应次项的系数就是\(1\),否则是\(0\)。然后就可以\(FFT\)求出每条对角线上有几个没被覆盖的格子。最后考虑每条对角线是否对答案产生贡献即可。

[HDU5307]He is Flying

这道题有点神,博主一开始没想到什么靠谱的思路。

于是我们可以考虑上网搜题解。

题解告诉我们可以构造这样一个答案的生成函数:

\[F(x)=(\sum_{i=1}^nix^{sum_i}) \times (\sum_{i=1}^nx^{-sum_{i-1}})-(\sum_{i=1}^nx^{sum_i}) \times (\sum_{i=1}^n(i-1)x^{sum_{i-1}})
\]

特别的,需要单独计算\(s=0\)时的答案,\(O(n)\)扫一遍即可。

\(FWT\)习题

[HDU5909]Tree Cutting

\(F[i](x)\)表示以\(i\)为根的子树的生成函数,树形\(DP\),合并时使用\(FWT\)即可。

注意子图必须连通。

[BZOJ4589]Hard Nim

根据博弈论相关知识,\(NanoApe\)能获胜当且仅当所有堆石子异或和是负数。

搞出一堆石子的生成函数,然后\(FWT \Rightarrow QPOW \Rightarrow IFWT\)即可。

[CF662C]Binary Table

发现在变换的行一定时,所有列的初始状态和结束状态的\(xor\)一定(暂时不考虑列的变换)。\(G(x)\)统计每个初始状态的数量,\(H(x)\)表示每个结束状态的贡献,即\(H(x)\)的\(i\)次项系数\(h_i=min(\_\_builtin\_popcount(i),n-\_\_builtin\_popcount(i))\)。

\(F(x)=G(x) \oplus H(x)\),\(F(x)\)最小的系数即为答案。

[BZOJ4036][HAOI2015]按位或

根据\(min-max\)容斥,\(E(max\{S\})=\sum_{T \subseteq S}(-1)^{|T|+1}E(min\{T\})\)。

\(E(min\{T\})\)可以通过补集求,需要用到\(FWT\)。

随机推荐

  1. Android——LruCache源码解析

    以下针对 Android API 26 版本的源码进行分析. 在了解LruCache之前,最好对LinkedHashMap有初步的了解,LruCache的实现主要借助LinkedHashMap.Lin ...

  2. 文件压缩、解压工具类。文件压缩格式为zip

    package com.JUtils.file; import java.io.BufferedOutputStream; import java.io.File; import java.io.Fi ...

  3. mysql日志信息查看与设置mysql-bin

    查看 sql查询记录  日志是否开启 SHOW GLOBAL VARIABLES LIKE '%general_log%' 二进制日志 是否开启 SHOW GLOBAL VARIABLES LIKE ...

  4. 【错误】jsp查询字符串中空格导致的异常问题!

    jsp中查询字符串中空格问题 jsp中查询字符串中参数名的等号右边最好不要出现空格,因为编译器会把他当做是参数值得一部分. 例如: <a href="adjust.jsp?number ...

  5. python学习-第四天补充-面向对象

    python学习-第四天补充-面向对象 python 私有 --name mangling(名字修改.名字) 在命名时,通过使用两个下划线作为开头,可以使得这个变量或者函数编程私有的,但是这个其实的p ...

  6. 中标麒麟(linux)mysql配置记录

    刚装好mysql时,使用正常,后来再次使用时,连接不成功.(虚拟机中) 配置网络有问题, 1.我将ifcfg-*的两个文件备份后删除了. 2.点击右下角的小电脑,重新新建一个网络连接.把网络接入主机的 ...

  7. POJ 3743 LL’s cake(圆+PSLG)

    题意是给你一块在原点半径为10的圆,然后告诉你一条直线在圆弧上的极角,相当于用这条直线把这个圆分成两半,然后一共是n条直线切圆,就好比切蛋糕,问你其中最大一块的面积是多少. 如果我们将圆弧转化成直线边 ...

  8. 【学习总结】快速上手Linux玩转典型应用-目录

    内容链接 慕课网:快速上手Linux玩转典型应用 目录 第1章-课程介绍 第2章-linux简介 第3章-CentOS的安装 第4章-准备工作 第5章-远程连接SSH专题 第6章-linux常用命令讲 ...

  9. Centos克隆虚拟机后配置网络

    修改网卡相关信息,复制第二个网卡的mac地址. vim /etc/udev/rules.d/70-persistent-net.rules 修改网卡的信息 vim /etc/sysconfig/net ...

  10. DRF框架 之基础配置

    Vue框架的总结 """ 1.vue如果控制html 在html中设置挂载点.导入vue.js环境.创建Vue对象与挂载点绑定 2.vue是渐进式js框架 3.vue指令 ...