BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 网络流 + 二分答案
Description
Farmer John is constructing a new milking machine and wishes to keep it secret as long as possible. He has hidden in it deep within his farm and needs to be able to get to the machine without being detected. He must make a total of T (1 <= T <= 200) trips to the machine during its construction. He has a secret tunnel that he uses only for the return trips. The farm comprises N (2 <= N <= 200) landmarks (numbered 1..N) connected by P (1 <= P <= 40,000) bidirectional trails (numbered 1..P) and with a positive length that does not exceed 1,000,000. Multiple trails might join a pair of landmarks. To minimize his chances of detection, FJ knows he cannot use any trail on the farm more than once and that he should try to use the shortest trails. Help FJ get from the barn (landmark 1) to the secret milking machine (landmark N) a total of T times. Find the minimum possible length of the longest single trail that he will have to use, subject to the constraint that he use no trail more than once. (Note well: The goal is to minimize the length of the longest trail, not the sum of the trail lengths.) It is guaranteed that FJ can make all T trips without reusing a trail.
Input
* Line 1: Three space-separated integers: N, P, and T * Lines 2..P+1: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, indicating that a trail connects landmark A_i to landmark B_i with length L_i.
Output
* Line 1: A single integer that is the minimum possible length of the longest segment of Farmer John's route.
可以二分这个最长长度的上限 $mid$,每次只加入长度小于等于 $mid$ 的边
剩下的问题就是要找到 $T$ 个互不重叠的 '环'
跑一个最大流就好了,若流量大于等于 $T$,则符合要求
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 100000
#define inf 230
using namespace std;
int n,m,cc,S,T;
struct Dinic {
struct Edge {
int from,to,cap;
Edge(int from=0,int to=0,int cap=0):from(from),to(to),cap(cap){}
};
queue<int>Q;
vector<Edge>edges;
vector<int>G[300];
int current[300],d[300],vis[300];
void addedge(int u,int v,int c) {
edges.push_back(Edge(u,v,c));
edges.push_back(Edge(v,u,0));
int o=edges.size();
G[u].push_back(o-2);
G[v].push_back(o-1);
}
int BFS() {
memset(vis,0,sizeof(vis)), memset(d,0,sizeof(d));
vis[S]=1,d[S]=0;
Q.push(S);
while(!Q.empty()) {
int u=Q.front(); Q.pop();
for(int i=0;i<G[u].size();++i) {
Edge e=edges[G[u][i]];
if(e.cap>0 && !vis[e.to]) {
vis[e.to]=1, d[e.to]=d[u]+1;
Q.push(e.to);
}
}
}
return vis[T];
}
int dfs(int x,int cur) {
if(x==T) return cur;
int f,flow=0;
for(int i=current[x];i<G[x].size();++i) {
current[x]=i;
Edge e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && e.cap > 0) {
f=dfs(e.to,min(cur, e.cap));
if(f) {
cur-=f, flow+=f, edges[G[x][i]].cap-=f, edges[G[x][i]^1].cap+=f;
if(cur<=0) return flow;
}
}
}
return flow;
}
int maxflow() {
int re=0;
while(BFS()) memset(current,0,sizeof(current)),re+=dfs(S,inf);
return re;
}
void re() {
edges.clear();
for(int i=0;i<300;++i) G[i].clear();
}
}net;
struct Node {
int u,v,c;
}nd[maxn];
bool cmp(Node a,Node b) {
return a.c < b.c;
}
int check(int t) {
net.re();
for(int i=1;i<=t;++i) {
net.addedge(nd[i].u,nd[i].v,1);
net.addedge(nd[i].v,nd[i].u,1);
}
return net.maxflow() >= cc;
}
int main() {
// setIO("input");
scanf("%d%d%d",&n,&m,&cc);
for(int i=1;i<=m;++i) scanf("%d%d%d",&nd[i].u,&nd[i].v,&nd[i].c);
sort(nd+1,nd+1+m,cmp);
int l=1,r=m,mid,ans=0;
S=1,T=n;
while(l<=r) {
mid=(l+r)>>1;
if(check(mid)) ans=mid, r=mid-1;
else l=mid+1;
}
printf("%d\n",nd[ans].c);
return 0;
}
BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 网络流 + 二分答案的更多相关文章
- BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机
Description 约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农场里,使它不被发现.在挤奶机制造的过程中,他需要去挤奶机所在的地方T(1≤T ...
- [bzoj1733][Usaco2005 feb]Secret Milking Machine 神秘的挤奶机_网络流
[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 题目大意:约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农 ...
- 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流
题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...
- [BZOJ 1733] [Usaco2005 feb] Secret Milking Machine 【二分 + 最大流】
题目链接:BZOJ - 1733 题目分析 直接二分这个最大边的边权,然后用最大流判断是否可以有 T 的流量. 代码 #include <iostream> #include <cs ...
- BZOJ1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机
n<=200个点m<=40000条边无向图,求 t次走不经过同条边的路径从1到n的经过的边的最大值 的最小值. 最大值最小--二分,t次不重边路径--边权1的最大流. #inclu ...
- POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9658 Accepted: ...
- POJ2455 Secret Milking Machine
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12324 Accepted ...
- POJ 2455 Secret Milking Machine(最大流+二分)
Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...
- BZOJ 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛( 二分答案 )
最小最大...又是经典的二分答案做法.. -------------------------------------------------------------------------- #inc ...
随机推荐
- MySQL知识集合
1.Mysql体系架构 2.MySQL文件结构 (1)参数文件:启动MySQL实例的时候,指定一些初始化参数,比如缓冲池大小.数据库文件路径.用户名密码等 -my.cnf读取优 ...
- Scratch少儿编程系列:(五)猜数字
一.程序说明: 程序生成1-100之间的随机数,如56,小明在输入框中输入猜的数字.如输入80,提示“猜大了”,如输入45,则提示“猜小了”. 不超过5次猜中,则成功,否则失败. 二.程序的流程图 为 ...
- 第四周课程总结&第二次实验报告
实验二 Java简单类与对象 实验目的 掌握类的定义,熟悉属性.构造函数.方法的作用,掌握用类作为类型声明变量和方法返回值: 理解类和对象的区别,掌握构造函数的使用,熟悉通过对象名引用实例的方法和属性 ...
- Miller-Robin 素数测试法 模板
测试单个素数,出错概率比计算机本身出错的概率还要低 算法是基于费马小定理(format),二次探测定理(x*x % p == 1 ,若P为素数,则x的解只能是x = 1或者x = p - 1)加上迭代 ...
- spring maven依赖
图解spring容器 核心容器(core container) spring-core 这个jar 文件包含Spring 框架基本的核心工具类.Spring 其它组件要都要使用到这个包里的类,是其它组 ...
- [19/10/16-星期三] Python中的模块和包、异常、操作文件
一.模块 # 模块(module) # 模块化,模块化指将一个完整的程序分解为一个一个小的模块 # 通过将模块组合,来搭建出一个完整的程序 # 不采用模块化,统一将所有的代码编写到一个文件中 # 采用 ...
- linux下的变量规则
1.变量名可以由字母.数字和下划线组成,但是不能以数字开头: 2.变量在命名时,默认情况下为字符型: 3.为变量赋值时,等号两边不能有空格: 4.如果要增加变量的值,可以进行变量的叠加,不过需要将变量 ...
- 工作笔记之:如何在eclipse安装CVS插件?找了很久的,自己总结一下
(1)在主目录里“help”→Install New Software.....→The Eclipse Project Updates - http://download.eclipse.org/e ...
- 【源码解读】cycleGAN(三):数据读取
源码地址:https://github.com/aitorzip/PyTorch-CycleGAN 数据的读取是比较简单的,cycleGAN对数据没有pair的需求,不同域的两个数据集分别存放于A,B ...
- bak文件恢复成 SQL2005 数据库 的全程讲解
经常会碰到客户给我们发的是一个bak的数据库备份文件,而不是一个数据库.这就需要我们把这数据文件还原成数据库的形式. 如将demo.bak数据库恢复到mssql2005下 打开SQL2005,打开后就 ...