【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces
Vector Space:
R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 contains all column vectors with five components. This is called "5-dimensional space". The great thing about linear algebra is that it deals easily with five-dimensional space. We don't draw the vectors, we just need the five numbers (or n numbers).
A real vector space is a set of "vectors" together with rules for vector addition and for multiplication by real numbers. The addition and the multiplication must produce vectors that are in the space.
xy plane is a typical R2 space, consists of all the 2-D vectors. If the origin point were removed, this would not be a vector space again. Because if the scalar multiplier is zero, the produced vector will not in that space. Every vector space has the origin point.
The commutative law is v + w = w + v; the distributive law is c(v + w) = cv + cwo ; There is a unique "zero vector" satisfying 0 + v = v.
Subspace:

Fact:Every subspace contains the zero vector
Example1: Sub space of R2:
a. Zero point; b. Line in R2 going through zero point; c.R2 itself
Example2: Sub space of R3:
a. Zero point; b. Line in R3 going through zero point; c. Plane in R3 going through zero point; d.R3 itself
Column space of A:
Start with the columns of A, and take all their linear combinations. This produces the column space of A. It is a vector space made up of column vectors.C (A) contains not just the n columns of A, but all their combinations Ax.

To solve Ax = b is to express b as a combination of the columns. The right side b has to be in the column space produced by A on the left side, or no solution!
Suppose A is an m by n matrix. Its columns have m components (not n). So the columns belong to Rm. The column space of A is a subspace of Rm (not Rn).
Example1:


Example2: C(I) is R2, C(A) is a line in R2, C(B) is R2

Null Space of A: Solving Ax=0
One solution is x=0, for invertible matrix A, it's the only solution; for other matrices, there are nonzero solutions, each of them belongs to Null Space.

The solution vectors x have n components. They are vectors in Rn, so the nullspace is a subspace of Rn. The column space C (A) is a subspace of Rm. If the right side b is not zero, the solutions of Ax = b do not form a subspace. The vector x = 0 is only a solution if b = 0. When the set of solutions does not include x = 0, it cannot be a subspace.

【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces的更多相关文章
- 【读书笔记】:MIT线性代数(5):Four fundamental subspaces
At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...
- STL源码剖析读书笔记之vector
STL源码剖析读书笔记之vector 1.vector概述 vector是一种序列式容器,我的理解是vector就像数组.但是数组有一个很大的问题就是当我们分配 一个一定大小的数组的时候,起初也许我们 ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(II)
http://blog.csdn.net/jinshengtao/article/details/17954427 <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(I)
http://blog.csdn.net/jinshengtao/article/details/17883075/ <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《3D Math Primer for Graphics and Game Development》读书笔记1
<3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...
- 【Todo】【读书笔记】机器学习-周志华
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- STL源码剖析读书笔记--第四章--序列式容器
1.什么是序列式容器?什么是关联式容器? 书上给出的解释是,序列式容器中的元素是可序的(可理解为可以按序索引,不管这个索引是像数组一样的随机索引,还是像链表一样的顺序索引),但是元素值在索引顺序的方向 ...
随机推荐
- Python : Polymorphism
class Animal: def __init__(self, name): # Constructor of the class self.name = name def talk(self): ...
- qt 如何注册自定义类型?
如何声明自定义类型 如果仅仅在 QVariant 中使用,则仅需要使用 Q_DECLARE_METATYPE 宏进行声明即可. class Custom_ : public QObject { Q_O ...
- C#设计模式:装饰者模式(Decorator Pattern)
一,装饰者模式(Decorator Pattern):装饰模式指的是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能. 二,在以上代码中我们是中国人是根本行为,我们给中国人装饰我会说英语 ...
- BUUCTF--xor
测试文件:https://buuoj.cn/files/caa0fdad8f67a3115e11dc722bb9bba7/7ea34089-68ff-4bb7-8e96-92094285dfe9.zi ...
- IDEA中添加自定义的方法快捷方式
IDEA中快速添加自己自定义的方法方法,想要什么快捷方法都行 作为一个从MyEclipse转IDEA的程序员,原来写main就能补全main方法,写syso就能补全System.out.println ...
- Linux下svn回滚
方法1: 用svn merge 1) 先 svn up,保证更新到最新的版本,如20: 2) 然后用 svn log ,查看历史修改,找出要恢复的版本,如10 .如果想要更详细的了解情况,可以使用sv ...
- 微信小程序(15)--上传图片公用组件(2)
接下来开始写写上传图片的公用组件,可以自定义上传几张图片. chooseImage文件夹里面的index.wxml和index.js,涉及图片上传,删除,预览. <view class=&quo ...
- tomcat常用功能
修改端口号 1024-655365 之间取端口号 Tomcat有3个重要端口: 默认访问端口:8080 默认监听关闭tomcat的端口:8005 默认AJP访问端口:8009 vim tomcat/c ...
- MySQL --12 备份的分类
目录 物理备份(Xtrabackup) 1.全量备份 2.增量备份及恢复 3.差异备份及恢复 4.实战:企业级增量恢复实战 物理备份(Xtrabackup) Xtrabackup安装 #下载epel源 ...
- Jmeter --Json Extractor (后置处理器)
一.使用场景 Json Extractor 后置处理器用在返回格式为json的HTTP请求中, 用来获取返回的json中的某个值.并保存成变量供后面的请求进行调用或者断言等. 二.使用方法 1.创建H ...