【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces
Vector Space:
R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 contains all column vectors with five components. This is called "5-dimensional space". The great thing about linear algebra is that it deals easily with five-dimensional space. We don't draw the vectors, we just need the five numbers (or n numbers).
A real vector space is a set of "vectors" together with rules for vector addition and for multiplication by real numbers. The addition and the multiplication must produce vectors that are in the space.
xy plane is a typical R2 space, consists of all the 2-D vectors. If the origin point were removed, this would not be a vector space again. Because if the scalar multiplier is zero, the produced vector will not in that space. Every vector space has the origin point.
The commutative law is v + w = w + v; the distributive law is c(v + w) = cv + cwo ; There is a unique "zero vector" satisfying 0 + v = v.
Subspace:

Fact:Every subspace contains the zero vector
Example1: Sub space of R2:
a. Zero point; b. Line in R2 going through zero point; c.R2 itself
Example2: Sub space of R3:
a. Zero point; b. Line in R3 going through zero point; c. Plane in R3 going through zero point; d.R3 itself
Column space of A:
Start with the columns of A, and take all their linear combinations. This produces the column space of A. It is a vector space made up of column vectors.C (A) contains not just the n columns of A, but all their combinations Ax.

To solve Ax = b is to express b as a combination of the columns. The right side b has to be in the column space produced by A on the left side, or no solution!
Suppose A is an m by n matrix. Its columns have m components (not n). So the columns belong to Rm. The column space of A is a subspace of Rm (not Rn).
Example1:


Example2: C(I) is R2, C(A) is a line in R2, C(B) is R2

Null Space of A: Solving Ax=0
One solution is x=0, for invertible matrix A, it's the only solution; for other matrices, there are nonzero solutions, each of them belongs to Null Space.

The solution vectors x have n components. They are vectors in Rn, so the nullspace is a subspace of Rn. The column space C (A) is a subspace of Rm. If the right side b is not zero, the solutions of Ax = b do not form a subspace. The vector x = 0 is only a solution if b = 0. When the set of solutions does not include x = 0, it cannot be a subspace.

【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces的更多相关文章
- 【读书笔记】:MIT线性代数(5):Four fundamental subspaces
At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...
- STL源码剖析读书笔记之vector
STL源码剖析读书笔记之vector 1.vector概述 vector是一种序列式容器,我的理解是vector就像数组.但是数组有一个很大的问题就是当我们分配 一个一定大小的数组的时候,起初也许我们 ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(II)
http://blog.csdn.net/jinshengtao/article/details/17954427 <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(I)
http://blog.csdn.net/jinshengtao/article/details/17883075/ <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《3D Math Primer for Graphics and Game Development》读书笔记1
<3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...
- 【Todo】【读书笔记】机器学习-周志华
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- STL源码剖析读书笔记--第四章--序列式容器
1.什么是序列式容器?什么是关联式容器? 书上给出的解释是,序列式容器中的元素是可序的(可理解为可以按序索引,不管这个索引是像数组一样的随机索引,还是像链表一样的顺序索引),但是元素值在索引顺序的方向 ...
随机推荐
- swagger2文档使用
①.导入依赖 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-sw ...
- centos 7.2 查看时间,精确到毫秒级别
[root@ ~]# date +'%x %X.%N' 2019年08月06日 11时25分13秒.193666438 [root@commonTest ~]# date --help 用法:date ...
- 洛谷 P1892 [BOI2003]团伙(种类并查集)
传送门 解题思路 用并查集f存朋友关系,一个数组e存的是敌人关系,是一个辅助数组,所以叫做种类并查集. 当p和q是朋友时,直接合并,但是当是敌人时,需要一些操作. 当p还没有敌人时(即p的敌人是自己) ...
- seaborn教程4——分类数据可视化
https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...
- 阿里云ECS服务安装 nginx+php+MariaDB完整版
安装 Nginx想在 CentOS 系统上安装 Nginx ,你得先去添加一个资源库,像这样: vim /etc/yum.repos.d/nginx.repo使用 vim 命令去打开 /etc/yum ...
- ECharts 图表导出
Echarts图形是由Javascript亲自在前端网页上绘制的 1.用ECharts配置项手册中的toolbox.feature.saveAsImage toolbox: { show: true, ...
- 【JAVA】eclipse-使用入门及常用快捷键
目录 下载与安装 HelloWorld 新建项目 视图与视窗 快捷键 个性化设置 导入项目 jar包 下载与安装 下载 网址:官网下载 注意: 下载javaee版 注意与本机的java环境相匹配,32 ...
- Java JNA (三)—— 结构体使用及简单示例
JNA简介 JNA全称Java Native Access,是一个建立在经典的JNI技术之上的Java开源框架(https://github.com/twall/jna).JNA提供一组Java工具类 ...
- redis开发规范阿里云
一.键值设计 1.key名设计 1) 可读性和可管理性: 以业务名或数据库名为前缀,以防key冲突,用冒号分隔,比如业务名:表名:ID 2)简洁性: 保证语义的前提下,控制key的长度,当key较多 ...
- 向指定URL 发送POST请求的方法
java发送psot请求: package com.tea.web.admin; import java.io.BufferedReader; import java.io.IOException; ...