【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces
Vector Space:
R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 contains all column vectors with five components. This is called "5-dimensional space". The great thing about linear algebra is that it deals easily with five-dimensional space. We don't draw the vectors, we just need the five numbers (or n numbers).
A real vector space is a set of "vectors" together with rules for vector addition and for multiplication by real numbers. The addition and the multiplication must produce vectors that are in the space.
xy plane is a typical R2 space, consists of all the 2-D vectors. If the origin point were removed, this would not be a vector space again. Because if the scalar multiplier is zero, the produced vector will not in that space. Every vector space has the origin point.
The commutative law is v + w = w + v; the distributive law is c(v + w) = cv + cwo ; There is a unique "zero vector" satisfying 0 + v = v.
Subspace:

Fact:Every subspace contains the zero vector
Example1: Sub space of R2:
a. Zero point; b. Line in R2 going through zero point; c.R2 itself
Example2: Sub space of R3:
a. Zero point; b. Line in R3 going through zero point; c. Plane in R3 going through zero point; d.R3 itself
Column space of A:
Start with the columns of A, and take all their linear combinations. This produces the column space of A. It is a vector space made up of column vectors.C (A) contains not just the n columns of A, but all their combinations Ax.

To solve Ax = b is to express b as a combination of the columns. The right side b has to be in the column space produced by A on the left side, or no solution!
Suppose A is an m by n matrix. Its columns have m components (not n). So the columns belong to Rm. The column space of A is a subspace of Rm (not Rn).
Example1:


Example2: C(I) is R2, C(A) is a line in R2, C(B) is R2

Null Space of A: Solving Ax=0
One solution is x=0, for invertible matrix A, it's the only solution; for other matrices, there are nonzero solutions, each of them belongs to Null Space.

The solution vectors x have n components. They are vectors in Rn, so the nullspace is a subspace of Rn. The column space C (A) is a subspace of Rm. If the right side b is not zero, the solutions of Ax = b do not form a subspace. The vector x = 0 is only a solution if b = 0. When the set of solutions does not include x = 0, it cannot be a subspace.

【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces的更多相关文章
- 【读书笔记】:MIT线性代数(5):Four fundamental subspaces
At the beginning, the difference between rank and dimension: rank is a property for matrix, while di ...
- STL源码剖析读书笔记之vector
STL源码剖析读书笔记之vector 1.vector概述 vector是一种序列式容器,我的理解是vector就像数组.但是数组有一个很大的问题就是当我们分配 一个一定大小的数组的时候,起初也许我们 ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(II)
http://blog.csdn.net/jinshengtao/article/details/17954427 <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《Mastering Opencv ...读书笔记系列》车牌识别(I)
http://blog.csdn.net/jinshengtao/article/details/17883075/ <Mastering Opencv ...读书笔记系列>车牌识别(I ...
- 《3D Math Primer for Graphics and Game Development》读书笔记1
<3D Math Primer for Graphics and Game Development>读书笔记1 本文是<3D Math Primer for Graphics and ...
- 【Todo】【读书笔记】机器学习-周志华
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- STL源码剖析读书笔记--第四章--序列式容器
1.什么是序列式容器?什么是关联式容器? 书上给出的解释是,序列式容器中的元素是可序的(可理解为可以按序索引,不管这个索引是像数组一样的随机索引,还是像链表一样的顺序索引),但是元素值在索引顺序的方向 ...
随机推荐
- Codeforces 1110C (思维+数论)
题面 传送门 分析 这种数据范围比较大的题最好的方法是先暴力打表找规律 通过打表,可以发现规律如下: 定义\(x=2^{log_2a+1}\) (注意,cf官方题解这里写错了,官方题解中定义\(x=2 ...
- scite配置文件及常用设置
在linux系统中,SciTE的用户设置文件为 ~/.SciTEUser.properties,优先级高于全局配置文件. scite是个不错的IDE工具,只是本人发现,在开发团队中和其他成员的编辑工具 ...
- 获取Linux内核未导出符号的几种方式
从Linux内核的2.6某个版本开始,内核引入了导出符号的机制.只有在内核中使用EXPORT_SYMBOL或EXPORT_SYMBOL_GPL导出的符号才能在内核模块中直接使用.然而,内核并没有导出所 ...
- python学习第三十天函数的形参,实参及函数文档
python函数的形参是定义函数def 函数名 小括号里面的变量,实参是调用函数时候的值,函数文档是提供函数功能的开发文档,下面 详细说明系列方法 1,函数的形参 def chan(name): pr ...
- idea 创建 SSM + maven Java Web 项目流程
idea 创建 SSM + maven Java Web 项目流程 一.idea 中选择File,New Project 新建项目 二.选择Maven,勾选上面的Create from archety ...
- 关于vuex中的状态变量的思考???
store中存取的为整个项目的公共变量,通过设置mutation来改变他们 假设现有如下代码: const store = new Vuex.Store({ state: { userInfo:{ n ...
- proc - 进程信息伪文件系统
描述 /proc 是一个伪文件系统, 被用作内核数据结构的接口, 而不仅仅是解释说明 /dev/kmem. /proc里的大多数文件都是只读的, 但也可以通过写一些文件来改变内核变量. 下面对整个 / ...
- 前端每日实战:49# 视频演示如何用纯 CSS 创作一支诱人的冰棍
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/vrxzMw 可交互视频教程 此视频 ...
- BZOJ2695 保护古迹
非常带劲之计算几何 写的头晕= = 就是平面图转对偶图然后最小割 由于p非常小我们枚举所有保护状态然后割一下 建图真的烦 就是把区域划分出来看一下每一个古迹点是否被小区域包含[好像也可以写点定位] 然 ...
- java object bean 转map
import java.lang.reflect.Field; /** * obj-->map * ConvertObjToMap * 2016年8月17日上午10:53:59 * @param ...