机器学习实战笔记-5-Logistic回归
Logistic回归
优缺点 | 适用范围 |
---|---|
优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 适用于:数值型和标称型数据。 | 仅用于二分类 |
原理:
每个特征都乘以一个回归系数>>将结果相加>>总和代入到Sigmoid函数,得到范围在(0,1)中的数值>>预测分类结果\(\hat{y}\)。即\(Z= w_{0}x_{0} + w_{1}x_{1} + \ldots + w_{n}x_{n} = \sum_{i = 0}^{n}{w_{i}x_{i} =w^{T}x}\),代入Sigmoid函数即可。
两个类别的分割点是\(Z=0\),即直线\(w_{0}x_{0}+w_{1}x_{1}+\ldots +w_{n}x_{n}=0\)。
\]
若用\(y’\)表示分类为1的概率,\(P\left( y = 1 \middle| x,w \right) =
y'\),则分类为0的概率为\(P\left( y = 0 \middle| x,w \right) = 1 - y'\)。
极大似然概率为\(L\left( w \right) = \prod_{i =
1}^{m}{ { {(y}_{i}^{'})}^{y_{i} }\left( 1 - y_{i}^{'} \right)^{1 - y_{i} } }\),
取对数后为\(\mathbf{l}\left( \mathbf{w} \right)\mathbf{=}\sum_{\mathbf{i =
1} }^{\mathbf{m} }{\mathbf{(}\mathbf{y}_{\mathbf{i} }\log\left(
\mathbf{y}^{\mathbf{'} } \right)\mathbf{+ (1
-}\mathbf{y}_{\mathbf{i} }\mathbf{)log(1
-}\mathbf{y}_{\mathbf{i} }^{\mathbf{'} }\mathbf{)} }\mathbf{)}\),迭代式为
\(\mathbf{w}_{\mathbf{j} }\mathbf{: =}\mathbf{w}_{\mathbf{j} }\mathbf{+
\alpha}\frac{\mathbf{\partial} }{\mathbf{\partial}\mathbf{w}_{\mathbf{j} } }\mathbf{l(w)}\)
\]
\]
其中用到了 记\(f\left( x \right) = \frac{1}{1 +
e^{g(x)} }\),则\(\frac{\partial}{\partial x}f\left( x \right) = f\left( x
\right)\left( 1 - f\left( x \right) \right)\frac{\partial}{\partial x}g(x)\)
现有一数据集trainMat,记作矩阵X,则\(error = \mathbf{\text{labelMat} } -
\sigma(\mathbf{X} \times \mathbf{w})\)为预测值与实际值的差。
极大似然概率就是要回归的最大值\(l(w)\),并不在代码中体现,迭代式为
\]
\]
梯度上升算法伪代码:
每个回归系数初始化为1
重复R次
计算整个数据集的梯度
使用alpha×gradient更新回归系数的向量
返回回归系数
随机梯度上升算法伪代码:
每个回归系数初始化为1
对数据集中每个样本
计算该样本的梯度
使用alpha×gradient更新回归系数的值
返回回归系数值
知识点:最大似然估计法-本质就是求联合概率的最大值
二项分布的似然函数(某次实验:投n次硬币有m次正面)
\]
二项分布用通俗点的话来说,就是描述了抛10次硬币的结果的概率,其中,“花”出现的概率为\(\theta\)。如{4,5,5,2,7,4}就是6次实验的结果,每个数字表示抛10次硬币出现了几次“花”。
用\(x_{1},x_{2},\ldots,x_{n}\)表示实验结果,则因为每次实验都是独立的,所以似然函数可以写作(得到这个似然函数很简单,独立事件的联合概率,直接相乘就可以得到):
\]
其中\(f\left( x_{n} \middle| \theta\right)\)表示同一参数下的实验结果,也可认为是条件概率。
用python画的图
机器学习实战笔记-5-Logistic回归的更多相关文章
- 机器学习实战笔记5(logistic回归)
1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid ...
- 《机器学习实战》-逻辑(Logistic)回归
目录 Logistic 回归 本章内容 回归算法 Logistic 回归的一般过程 Logistic的优缺点 基于 Logistic 回归和 Sigmoid 函数的分类 Sigmoid 函数 Logi ...
- 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...
- 机器学习实战笔记-k-近邻算法
机器学习实战笔记-k-近邻算法 目录 1. k-近邻算法概述 2. 示例:使用k-近邻算法改进约会网站的配对效果 3. 示例:手写识别系统 4. 小结 本章介绍了<机器学习实战>这本书中的 ...
- 机器学习实战 - 读书笔记(05) - Logistic回归
解释 Logistic回归用于寻找最优化算法. 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大? 我们可以看 ...
- 机器学习实战读书笔记(五)Logistic回归
Logistic回归的一般过程 1.收集数据:采用任意方法收集 2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳 3.分析数据:采用任意方法对数据进行分析 4. ...
- 机器学习实战笔记(Python实现)-04-Logistic回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-08-线性回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-09-树回归
---------------------------------------------------------------------------------------- 本系列文章为<机 ...
随机推荐
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- C#设计模式:职责链模式(Chain of Responsibility)
一,什么是职责链模式(Chain of Responsibility) 职责链模式是一种行为模式,为解除请求的发送者和接收者之间的耦合,而使多个对象都有机会处理这个请求.将这些对象连接成一条链,并沿着 ...
- Linux基于Hadoop2.8.0集群安装配置Hive2.1.1及基础操作
前言 安装Apache Hive前提是要先安装hadoop集群,并且hive只需要在hadoop的namenode节点集群里安装即可,安装前需保证Hadoop已启(动文中用到了hadoop的hdfs命 ...
- centos误删除文件如何恢复
当意识到误删除文件后,切忌千万不要再频繁写入了,否则你的数据恢复的数量将会很少. 而我们要做的是,第一时间把服务器上的服务全部停掉,直接killall 进程名 或者 kill -9 pid . 然后把 ...
- 3-基于双TMS320C6678+双XC6VSX315T的6U VPX高速数据处理平台
基于双TMS320C6678+双XC6VSX315T的6U VPX高速数据处理平台 一.板卡概述 板卡由我公司自主研发,基于VPX架构,主体芯片为两片 TI DSP TMS320C6678,两片V ...
- MySQL数据库5事务、视图、触发器、函数、数据库的备份
目录 一.事务(important) 1.1什么是事务? 1.2解决办法 1.2.1事务的语法 1.2.2使用事务解决转账问题代码演示 1.2.3rollback 1.3事务的特性(important ...
- 一些vue 响应式系统的底层的细节
当你把一个普通的 JavaScript 对象传给 Vue 实例的 data 选项,Vue 将遍历此对象所有的属性,并使用 Object.defineProperty 把这些属性全部转为 getter/ ...
- python绘制图的度分布柱状图, draw graph degree histogram with Python
图的度数分布 import collections import matplotlib.pyplot as plt import networkx as nx G = nx.gnp_random_gr ...
- Selenium-WebDriverApi介绍
浏览器操作: #刷新 driver.refresh() from selenium import webdriver driver=webdriver.Chrome() driver.get('htt ...