import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess:
sess.run(init)
for epoch in range(11):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
#保存模型
saver.save(sess,'net/my_net.ckpt')

以上是保存模型;

#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess:
sess.run(init)
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
saver.restore(sess,'net/my_net.ckpt')
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})) #
0.098
INFO:tensorflow:Restoring parameters from net/my_net.ckpt
0.9179

以下是载入模型,第一个print是看看随机生成的参数用于预测分类的结果;第二个print是看看载入的模型来预测分类的结果。

Tensorflow模型保存与载入的更多相关文章

  1. TensorFlow 模型保存/载入

    我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来.tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.jobl ...

  2. TensorFlow模型保存和加载方法

    TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name= ...

  3. TensorFlow模型保存和提取方法

    一.TensorFlow模型保存和提取方法 1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取.tf.train.Saver对象saver的save方法将Tens ...

  4. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  5. Tensorflow模型保存与加载

    在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提 ...

  6. 10 Tensorflow模型保存与读取

    我们的模型训练出来想给别人用,或者是我今天训练不完,明天想接着训练,怎么办?这就需要模型的保存与读取.看代码: import tensorflow as tf import numpy as np i ...

  7. 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)

    该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...

  8. 转 tensorflow模型保存 与 加载

    使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获 ...

  9. 【NLP学习其五】模型保存与载入的注意事项(记问题No module named 'model')

    这是一次由于路径问题(找不到模型)引出模型保存问题的记录 最近,我试着把使用GPU训练完成的模型部署至预发布环境时出现了一个错误,以下是log节选 unpickler.load() ModuleNot ...

随机推荐

  1. heike

    黑客工具 hacker disassembler engine download IDApro

  2. FPDF_CHAR_INFO

    typedef struct { FX_WCHAR m_Unicode; FX_WCHAR m_Charcode; FX_INT32 m_Flag; FX_FLOAT m_FontSize; FX_F ...

  3. u-boot v2018.01 启动流程分析 简单版(转)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_39655765/artic ...

  4. InnoDB和MyISAM的六大区别

    本人qq群也有许多的技术文档,希望可以为你提供一些帮助(非技术的勿加). QQ群:   281442983 (点击链接加入群:http://jq.qq.com/?_wv=1027&k=29Lo ...

  5. CentOS升级乱七八糟问题解决

    ----------------------------------------------------------------- Error: Package: libgpod--.el7.x86_ ...

  6. chrome scrollTop 获取失败问题及解决方案

    https://blog.csdn.net/h357650113/article/details/78384621

  7. BZOJ 3786: 星系探索 ETT

    Description 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其余的所有星球均有且仅有一个依赖星球.主星球 ...

  8. Selenium 多表单(frame/iframe)切换

    frame标签有frameset.frame.iframe三种,frameset跟其他普通标签没有区别,不会影响到正常的定位,而frame与iframe需要切换进去才能定位到其中的元素 比如下面这个网 ...

  9. go语言系列--golang在windows上的安装和开发环境goland的配置

    在windows上安装golang软件 golang中国网址为:https://studygolang.com/dl 我的学习选择版本:1.12.5 golang 1.12.5版本更新的内容:gola ...

  10. Java数据结构之排序---快速排序

    快速排序是对冒泡排序的一种改进. 快速排序的基本思想: 假设我们以升序为例,它的执行流程可以概括为,每一趟选择当前所有子序列中的一个关键字(通常我们选择第一个,下述代码实现选择的也是第一个数)作为枢纽 ...