分析

首先,STO ywy OTZ,ywy TQL%%%!

说一下这道题用min_25筛怎么做。

容易发现,对于所有质数\(p\),都满足\(f(p)=4\),于是我们就可以直接通过\([1,x]\)内的质数的个数\(h(x)\)来求出\(g(x)=\sum_{i=1}^{x}f(i) \times [i \in prime]\)了,即\(g(x)\)可以等价地表示为\(g(x)=4 \times h(x)\)。如何求\(h(x)\)是min_25筛的基本操作就不过多赘述了。而且进一步分析我们可以得出,\(f(p^q)=3 \times q+1,p \in prime\),这个结论在实现min_25筛时也很重要。

代码里的g[x]其实是我上面写的\(h(x)\)。

说一句题外话,min_25筛的话,使用哈希表实现更直观,但是如果用id1,id2两个数组实现的话常数会显著减小(哈希表的地方我注释掉了)。

代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline LL read(){
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
} const LL MAXN=1e11+5;
const int MAXR=1e6+5;
const int HMOD=3e6-1;
LL n,num[MAXR],g[MAXR];
int cnt,tot,prm[MAXR],id1[MAXR],id2[MAXR];
bool vis[MAXR]; /*
struct Hash_Map{
int siz,head[HMOD+5],nxt[MAXR],to[MAXR],sta[MAXR],top;
LL val[MAXR];
inline void insert(LL x,int y){
++siz;
nxt[siz]=head[x%HMOD];
val[siz]=x;
to[siz]=y;
head[x%HMOD]=siz;
sta[++top]=x%HMOD;
}
inline int operator [] (LL x){
for(register int i=head[x%HMOD];i;i=nxt[i])
if(val[i]==x) return to[i];
}
void clear(){
siz=0;
while(top) head[sta[top--]]=0;
}
}mp;
*/ void pre_process(int n){
rin(i,2,n){
if(!vis[i]) prm[++cnt]=i;
rin(j,1,cnt){
if(i*prm[j]>n) break;
vis[i*prm[j]]=true;
if(i%prm[j]==0) break;
}
}
} LL solve(LL x,int y){
// int k=mp[x];
int k=x<=MAXR-5?id1[x]:id2[n/x];
LL ret=(g[k]<<2)-((y-1)<<2);
rin(i,y,cnt){
if(1ll*prm[i]*prm[i]>x) break;
LL temp1=prm[i],temp2=1ll*prm[i]*prm[i];
for(register int j=1;temp2<=x;++j,temp1=temp2,temp2*=prm[i])
ret+=(3*j+1)*solve(x/temp1,i+1)+3*j+4;
}
return ret;
} int main(){
int T=read();
pre_process(500000);
while(T--){
tot=0;
// mp.clear();
n=read();
LL nxti;
for(register LL i=1;i<=n;i=nxti){
nxti=n/(n/i)+1;
num[++tot]=n/i;
// mp.insert(num[tot],tot);
if(num[tot]<=MAXR-5) id1[num[tot]]=tot;
else id2[nxti-1]=tot;
g[tot]=num[tot]-1;
}
rin(i,1,cnt){
if(1ll*prm[i]*prm[i]>n) break;// 这个一定要加,否则会T第一个点!
rin(j,1,tot){
if(1ll*prm[i]*prm[i]>num[j]) break;
// int k=mp[num[j]/prm[i]];
int k=num[j]/prm[i]<=MAXR-5?id1[num[j]/prm[i]]:id2[n/(num[j]/prm[i])];
g[j]-=g[k]-(i-1);
}
}
printf("%lld\n",solve(n,1)+1);
}
return 0;
}

[SPOJ20174]DIVCNT3 - Counting Divisors (cube):Min_25筛的更多相关文章

  1. SP34096 DIVCNTK - Counting Divisors (general)(Min_25筛)

    题面 洛谷 \(\sigma_0(i)\) 表示\(i\) 的约数个数 求\(S_k(n)=\sum_{i=1}^n\sigma_0(i^k)\mod 2^{64}\) 多测,\(T\le10^4,n ...

  2. [Spoj]Counting Divisors (cube)

    来自FallDream的博客,未经允许,请勿转载,谢谢. 设d(x)表示x的约数个数,求$\sum_{i=1}^{n}d(i^{3})$ There are 5 Input files. - Inpu ...

  3. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

  4. SPOJ:[DIVCNT3]Counting Divisors

    题目大意:求1~N的每个数因子数的立方和. 题解:由于N过大,我们不能直接通过线性筛求解.我们可以采用洲阁筛. 洲阁筛的式子可以写成: 对于F(1~√n),可以直接线性筛求解. 对于,我们进行以下DP ...

  5. DIVCNT2&&3 - Counting Divisors

    DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...

  6. Min_25 筛小结

    Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...

  7. 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...

  8. hdu6069 Counting Divisors 晒区间素数

    /** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...

  9. [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)

    题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive diviso ...

随机推荐

  1. 几个关于json序列化 的注解

    一.@JsonProperty 1.此注解用于属性上,作用是把该属性的名称序列化为另外一个名称.例如: @JsonProperty("name") private String N ...

  2. Python 之父 63 岁才退休,我 23 就中年危机。。

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 Python 之父 Guido van Rossum 在推特公布了自己从 Dropbox 公司离职的消息,并表示已经退休. ...

  3. 洛谷 P1169 棋盘制作 题解

    题面 这道题可以分成两部分来处理: 第一部分: 设f[i][j]表示右下角以(i,j)结尾的最大正方形的边长. 显然f[i][j]=min(f[i][j-1],f[i-1][j-1],f[i-1][j ...

  4. wordpress后台编辑如何显示定义的`style.css`样式

    wordpress后台编辑如何显示定义的style.css样式 由于公司官网采用wordpress进行搭建,但是却又自己设计页面,无奈主题只能自行构建了,直接修改wordpress自带的主题进行修改. ...

  5. 作业调度框架Quartz.NET-现学现用-02-任务监听 - 简书

    原文:作业调度框架Quartz.NET-现学现用-02-任务监听 - 简书 前言 任务调度系统并不是完美的,它会出现任务执行失败的情况.如果你需要处理任务失败后的逻辑,希望这篇笔记可以为你提供些帮助. ...

  6. 深入Spring Boot:那些注入不了的 Spring 占位符 ( ${} 表达式 )

    Spring里的占位符 spring里的占位符通常表现的形式是: 1 2 3 <bean id="dataSource" destroy-method="close ...

  7. linux 配置环境变量三种方式

    一:用于当前终端: export PATH=$PATH:<你的要加入的路径> 此方式仅用于当前终端,一旦该终端关闭,则配置失效 二:用于当前用户: vi ~/.bashrc 然后加入:ex ...

  8. 【vsCode】识别.vue/一键生成.vue模板文件

    1.安装插件Vetur 结果 ---> .vue代码识别彩标 2.配置.vue文件模板,以便快速一键生成格式化 2.1新建代码片段 File->Preferences->User S ...

  9. composer 被墙后镜像设置

    这一步主要更改镜像,不从外网直接取,现在改成了中国的一家镜像站.就是下面这个地址. https://packagist.phpcomposer.com#阿里云的composer镜像源composer ...

  10. zencart 显示Deprecated: Assigning the return value of new by reference is deprecated

    很多朋友的php程序当php的版本升级到5.3以后,会出现"Deprecated: Assigning the return value of new by reference is dep ...