[USACO16JAN]愤怒的奶牛Angry Cows (单调队列优化dp)
题目链接
Solution
应该可以用二分拿部分分,时间 \(O(n^2logn)\) 。
然后可以考虑 \(n^2\) \(dp\) ,令 \(f_i\) 代表 \(i\) 点被激活,然后激活 \(i\) 之前所有点所需的半径。
那么很显然 \(f[i]=min(max(pos[i]-pos[j],f[j]))\) 其中 \(j<i\) 。
再从后往前记录一个 \(g[i]\) , 那么答案就为 \(min(max(f[i],g[i]))\)以及还要考虑两点中间的,其中 \(1<=i<=n\) 。
但是如果 \(n^2\) 处理解决不了 \(50000\) 的数据。
考虑优化。
观察到 \(f[j]\) 是递增的,而 \(pos[i]-pos[j]\) 是递减的。
那么只要是后面的 \(f[i]\) 比前面小的话,那么肯定他是最优解。
所以维护一个 \(f[i]\) 递增的单调队列即可。
Code
#include<bits/stdc++.h>
#define ll long long
#define N 50005
using namespace std;
ll n,a[N];
double pos[N],f[N],g[N];
void in(ll &x)
{
ll f=1,w=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
x=f*w; return;
}
int main()
{
in(n);
for(int i=1;i<=n;i++)
{
ll x; in(x);
pos[i]=x*1.0;
}
sort(pos+1,pos+n+1);
if(n==1){cout<<0<<endl;return 0;}
if(n==2){cout<<pos[2]-pos[1]<<endl;return 0;}
f[2]=pos[2]-pos[1];
int head=1,tail=0;
a[++tail]=2;
for(int i=3;i<=n;i++)
{
while(max(pos[i]-pos[a[head]],f[a[head]]+1.0)>max(pos[i]-pos[a[head+1]],f[a[head+1]]+1.0))
{if(head==tail)break;head++;}
f[i]=max(pos[i]-pos[a[head]],f[a[head]]+1.0);
while(f[i]<f[a[tail]]){tail--;if(tail<head)break;}
a[++tail]=i;
}
g[n-1]=pos[n]-pos[n-1];
memset(a,0,sizeof(a));
head=tail=1;
a[tail]=n-1;
double ans=(0x3f3f3f3f3f)*1.0;
for(int i=n-2;i>=1;i--)
{
while(max(pos[a[head]]-pos[i],g[a[head]]+1)>max(pos[a[head+1]]-pos[i],g[a[head+1]]+1))
{if(head==tail)break;head++;}
g[i]=max(pos[a[head]]-pos[i],g[a[head]]+1);
while(g[i]<g[a[tail]]){tail--;if(tail<head)break;}
a[++tail]=i;
}
for(int i=1;i<=n;i++)
{
ans=min(max(f[i]*1.0,g[i]*1.0),ans);
if(i>1)
ans=min(max((pos[i]-pos[i-1])*1.0/2,max(f[i-1]*1.0+1,g[i]*1.0+1)),ans);
}
printf("%.1lf",ans);
return 0;
}
[USACO16JAN]愤怒的奶牛Angry Cows (单调队列优化dp)的更多相关文章
- [USACO16JAN]愤怒的奶牛Angry Cows
传送门 一道神奇的DP………(鬼知道他为什么在tarjan里面) 一开始可能会考虑贪心或者什么其他神奇的算法,不过还是DP比较靠谱. 我们用f[i]表示摧毁所有i左侧的炸 药包最少需要的能量,用g[i ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- 【单调队列优化dp】 分组
[单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
随机推荐
- 解决Chrome网页编码显示乱码的问题
解决Chrome网页编码显示乱码的问题 记得在没多久以前,Google Chrome上面出现编码显示问题时,可以手动来调整网页编码问题,可是好像在Chrome 55.0版以后就不再提供手动调整编码,所 ...
- 测开之路一百一十三:bootstrap媒体对象
实现效果,左边是图片或者其他媒体,右边是对应的描述 引入bootstrap和jquery标签 class="media" 数量多一些看着就会很规整 <!DOCTYPE htm ...
- python--url编码/解码
from urllib import parse 1.url编码:#定义一个url请求url='http://www.baidu.com?query=python基础教程' url_str = par ...
- shell 比较符号
if [ 1 -ne 1 ];then...fi这是指当1不等于1时执行then后的语句 -eq:等于-ne:不等于-le:小于等于-ge:大于等于-lt:小于-gt:大于
- EditPlus配色方案
找到配置文件:editplus_u.ini配置文件 [Options] Placement=2C00000002000000030000000083FFFF0083FFFFFFFFFFFFFFFFFF ...
- python批量下载验证码,用来做验证码处理
刚学到爬虫识别验证码,所以自己建一个获取验证码的类,感兴趣的道友,可以看看,代码如下: import requests import time import os import re class Pi ...
- promise 封装 axios
/*axios({ method:"get", url:"./data.json", data:{ id:10 } }).then((res)=>{ co ...
- Node.js实战9:用EventEmitter触发和响应事件。
Nodejs有一个重要的事件模块:EventEmitter. 它在Nodejs的内置及第三方模块中被大量使用,许多Nodejs项目的架构都是用它实现的. 可见,EventEmitter对于学习Node ...
- [Git] 008 status 与 commit 命令的补充
本文的"剧情"承接 [Git] 007 三棵树以及向本地仓库加入第一个文件 1. 对 "status" 的补充 1.1 "status" 有 ...
- [19/05/14-星期二] HTML_body标签(列表标签和图片标签)
一.列表标签 <!-- 快捷键 1.<meta charset="UTF-8"/> 用m6可直接写出 2.复制当前1行到下一行 ctrl+shift+R --&g ...