内存主要用来存储系统和应用程序的指令、数据、缓存等。

内存映射

物理内存也称为主存,动态随机访问内存(DRAM)。只有内核才可以直接访问物理内存。

  Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间是连续的。这样,进程就可以很方便地访问内存,更确切地说是访问虚拟内存。虚拟地址空间的内部又被分为内核空间和用户空间两部分。

  

  进程在用户态时,只能访问用户空间内存;只有进入内核态后,才可以访问内核空间内存。虽然每个进程的地址空间都包含了内核空间,但这些内核空间,其实关联的都是相同的物理内存,也就是共享动态链接库、共享内存等。当进程切换到内核态后,就可以很方便地访问内核空间内存。

  并不是所有的虚拟内存都会分配物理内存,只有那些实际使用的虚拟内存才分配物理内存,并且分配后的物理内存,是通过内存映射来管理的。内存映射,其实就是将虚拟内存地址映射到物理内存地址。为了完成内存映射,内核为每个进程都维护了一张页表,记录虚拟地址与物理地址的映射关系。

  

  页表实际上存储在 CPU 的内存管理单元 MMU 中,这样,正常情况下,处理器就可以直接通过硬件,找出要访问的内存。而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。

  

  CPU 上下文切换中的TLB(Translation Lookaside Buffer,转译后备缓冲器)是 MMU 中页表的高速缓存。由于进程的虚拟地址空间是独立的,而 TLB 的访问速度又比 MMU 快得多,所以,通过减少进程的上下文切换,减少 TLB 的刷新次数,就可以提高 TLB 缓存的使用率,进而提高 CPU 的内存访问性能。

  MMU 规定了一个内存映射的最小单位,也就是,通常是 4 KB 大小。这样,每一次内存映射,都需要关联 4 KB 或者 4KB 整数倍的内存空间。

  4 KB大小的页,会导致整个页表会变得非常大,比如32位系统4GB/4KB=100多万个页表项。为了解决页表项过多的问题,Linux 提供了两种机制,也就是多级页表和大页(HugePage)。

  多级页表就是把内存分成区块来管理,将原来的映射关系改成区块索引和区块内的偏移。由于虚拟内存空间通常只用了很少一部分,那么,多级页表就只保存这些使用中的区块,这样就可以大大地减少页表的项数。Linux 用四级页表来管理内存页,虚拟地址被分为 5 个部分,前 4 个表项用于选择页,而最后一个索引表示页内偏移。

  

  大页,就是比普通页更大的内存块,常见的大小有 2MB 和 1GB。大页通常用在使用大量内存的进程上,比如 Oracle、DPDK 等。

  通过这些机制,在页表的映射下,进程就可以通过虚拟地址来访问物理内存了。

虚拟内存空间分布

用户空间内存被分成五个不同的段。在这五个内存段中,堆和文件映射段的内存是动态分配的。如 C 标准库的 malloc() 或者 mmap() 分别在堆和文件映射段动态分配内存。64 位系统的内存分布也类似,只不过内存空间要大得多。

  

内存分配与回收

malloc() 是 C 标准库提供的内存分配函数,对应到系统调用上,有两种实现方式,即 brk() 和 mmap()。

  对小块内存(小于 128K),C 标准库使用 brk() 来分配,也就是通过移动堆顶的位置来分配内存。这些内存释放后并不会立刻归还系统,而是被缓存起来,这样就可以重复使用。

  对大块内存(大于 128K),则直接使用内存映射 mmap() 来分配,也就是在文件映射段找一块空闲内存分配出去。

  这两种方式的优缺点:

  brk() 方式的缓存,可以减少缺页异常的发生,提高内存访问效率。不过,由于这些内存没有归还系统,在内存工作繁忙时,频繁的内存分配和释放会造成内存碎片。

  mmap() 方式分配的内存,会在释放时直接归还系统,所以每次 mmap 都会发生缺页异常。在内存工作繁忙时,频繁的内存分配会导致大量的缺页异常,使内核的管理负担增大。这也是 malloc 只对大块内存使用 mmap 的原因。

  需要注意的是:当这两种调用发生后,其实并没有真正分配内存。这些内存,都只在首次访问时才分配,也就是通过缺页异常进入内核中,再由内核来分配内存。

  整体来说,Linux 使用伙伴系统来管理内存分配。前面我们提到过,这些内存在 MMU 中以页为单位进行管理,伙伴系统也一样,以页为单位来管理内存,并且会通过相邻页的合并,减少内存碎片化(比如 brk 方式造成的内存碎片)。

  但在实际系统运行中,会有大量比页还小的对象,如不到1K,如果为它们也分配单独的页,会浪费大量的内存,那该怎么分配内存呢?

  在用户空间,malloc 通过 brk() 分配的内存,在释放时并不立即归还系统,而是缓存起来重复利用。

  在内核空间,Linux 则通过 slab 分配器来管理小内存。你可以把 slab 看成构建在伙伴系统上的一个缓存,主要作用就是分配并释放内核中的小对象。

  内存回收:对内存来说,如果只分配而不释放,就会造成内存泄漏,甚至会耗尽系统内存。所以,在应用程序用完内存后,还需要调用 free() 或 unmap() ,来释放这些不用的内存。当然,系统也不会任由某个进程用完所有内存。在发现内存紧张时,系统就会通过一系列机制来回收内存,比如下面这三种方式:

  (1)回收缓存,比如使用 LRU(Least Recently Used)算法,回收最近使用最少的内存页面。

  (2)回收不常访问的内存,把不常用的内存通过交换分区(Swap)直接写到磁盘中。Swap 其实就是把一块磁盘空间当成内存来用。它可以把进程暂时不用的数据存储到磁盘中(这个过程称为换出),当进程访问这些内存时,再从磁盘读取这些数据到内存中(这个过程称为换入)。Swap 把系统的可用内存变大了,但通常只在内存不足时,才会发生 Swap 交换,并且由于磁盘读写的速度远比内存慢,Swap 会导致严重的内存性能问题。

  (3)杀死进程,内存紧张时系统还会通过 OOM(Out of Memory,内核的一种保护机制),直接杀掉占用大量内存的进程.。OOM 监控进程的内存使用情况,并且使用 oom_score 为每个进程的内存使用情况进行评分:

  一个进程消耗的内存越大,oom_score 就越大;

  一个进程运行占用的 CPU 越多,oom_score 就越小。

  这样,进程的 oom_score 越大,代表消耗的内存越多,也就越容易被 OOM 杀死,从而可以更好保护系统。

  当然,为了实际工作的需要,管理员可以通过 /proc 文件系统,手动设置进程的 oom_adj,从而调整进程的 oom_score。oom_adj 的范围是 [-17, 15],数值越大,表示进程越容易被 OOM 杀死;数值越小,表示进程越不容易被 OOM 杀死,其中 -17 表示禁止 OOM。如用下面的命令,你就可以把 sshd 进程的 oom_adj 调小为 -16,这样, sshd 进程就不容易被 OOM 杀死。

  echo -16 > /proc/$(pidof sshd)/oom_adj

如何查看内存使用情况

free 显示的是整个系统的内存使用情况

$ free
total used free shared buff/cache available
Mem: 8169348 263524 6875352 668 1030472 7611064
Swap: 0 0 0

默认单位是字节,行内容是物理内存 Mem 和交换分区 Swap,列分别为:

  第一列,total 是总内存大小;

  第二列,used 是已使用内存的大小,包含了共享内存;

  第三列,free 是未使用内存的大小;

  第四列,shared 是共享内存的大小

  第五列,buff/cache 是缓存和缓冲区的大小;

  最后一列,available 是新进程可用内存的大小。不仅包含未使用内存,还包括了可回收的缓存,所以一般会比未使用内存更大。不过,并不是所有缓存都可以回收,因为有些缓存可能正在使用中。

 top / ps 查看进程内存使用情况:

# 按下 M 切换到内存排序
$ top
...
KiB Mem : 8169348 total, 6871440 free, 267096 used, 1030812 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 7607492 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
430 root 19 -1 122360 35588 23748 S 0.0 0.4 0:32.17 systemd-journal
1075 root 20 0 771860 22744 11368 S 0.0 0.3 0:38.89 snapd
1048 root 20 0 170904 17292 9488 S 0.0 0.2 0:00.24 networkd-dispat
1 root 20 0 78020 9156 6644 S 0.0 0.1 0:22.92 systemd
12376 azure 20 0 76632 7456 6420 S 0.0 0.1 0:00.01 systemd
12374 root 20 0 107984 7312 6304 S 0.0 0.1 0:00.00 sshd
...

VIRT 是进程虚拟内存的大小,只要是进程申请过的内存,即便还没有真正分配物理内存,也会计算在内。

  RES 是常驻内存的大小,也就是进程实际使用的物理内存大小,但不包括 Swap 和共享内存。

  SHR 是共享内存的大小,比如与其他进程共同使用的共享内存、加载的动态链接库以及程序的代码段等。

  %MEM 是进程使用物理内存占系统总内存的百分比。

  注意点:

  (1)虚拟内存通常并不会全部分配物理内存。从上面的输出,你可以发现每个进程的虚拟内存都比常驻内存大得多。

  (2)共享内存 SHR 并不一定是共享的,比方说,程序的代码段、非共享的动态链接库,也都算在 SHR 里。当然,SHR 也包括了进程间真正共享的内存。所以在计算多个进程的内存使用时,不要把所有进程的 SHR 直接相加得出结果。

Linux性能优化从入门到实战:08 内存篇:内存基础的更多相关文章

  1. Linux性能优化从入门到实战:01 Linux性能优化学习路线

      我通过阅读各种相关书籍,从操作系统原理.到 Linux内核,再到硬件驱动程序等等.   把观察到的性能问题跟系统原理关联起来,特别是把系统从应用程序.库函数.系统调用.再到内核和硬件等不同的层级贯 ...

  2. Linux性能优化从入门到实战:16 文件系统篇:总结磁盘I/O指标/工具、问题定位和调优

    (1)磁盘 I/O 性能指标 文件系统和磁盘 I/O 指标对应的工具 文件系统和磁盘 I/O 工具对应的指标 (2)磁盘 I/O 问题定位分析思路 (3)I/O 性能优化思路 Step 1:首先采用 ...

  3. Linux性能优化从入门到实战:07 CPU篇:CPU性能优化方法

    性能优化方法论   动手优化性能之前,需要明确以下三个问题:   (1)如何评估性能优化的效果? 确定性能的量化指标.测试优化前的性能指标.测试优化后的性能指标.   量化指标的选择.至少要从应用程序 ...

  4. Linux性能优化从入门到实战:12 内存篇:Swap 基础

    内存资源紧张时,可能导致的结果 (1)OOM 杀死大内存CPU利用率又低的进程(系统内存耗尽的情况下才生效:OOM 触发的时机是基于虚拟内存,即进程在申请内存时,如果申请的虚拟内存加上服务器实际已用的 ...

  5. Linux性能优化从入门到实战:11 内存篇:内存泄漏的发现与定位

      用户空间内存包括多个不同的内存段,比如只读段.数据段.堆.栈以及文件映射段等.但会发生内存泄漏的内存段,只有堆和文件映射段中的共享内存.   内存泄漏的危害非常大,这些忘记释放的内存,不仅应用程序 ...

  6. Linux性能优化从入门到实战:09 内存篇:Buffer和Cache

      Buffer 是缓冲区,而 Cache 是缓存,两者都是数据在内存中的临时存储.   避免跟文中的"缓存"一词混淆,而文中的"缓存",则通指内存中的临时存储 ...

  7. Linux性能优化从入门到实战:10 内存篇:如何利用Buffer和Cache优化程序的运行效率?

    缓存命中率   缓存命中率,是指直接通过缓存获取数据的请求次数,占所有数据请求次数的百分比,可以衡量缓存使用的好坏.命中率越高,表示使用缓存带来的收益越高,应用程序的性能也就越好.   实际上,缓存是 ...

  8. Linux性能优化从入门到实战:17 网络篇:网络基础

    网络模型 为了解决网络互联中异构设备的兼容性问题,并解耦复杂的网络包处理流程,国际标准化组织制定了开放式系统互联通信参考模型(Open System Interconnection Reference ...

  9. Linux性能优化从入门到实战:15 文件系统篇:磁盘 I/O

    磁盘   磁盘是可以持久化存储的设备,按照存储介质来分类:   (1)机械磁盘(硬盘驱动器,Hard Disk Driver,HDD),主要由盘片和读写磁头组成,数据就存储在盘片的环状磁道中.在读写数 ...

随机推荐

  1. ASCII,Unicode,UTF-8

    ASCII ASCII(American Standard Code for Information Interchange,美国信息交换标准代码)是基于拉丁字母的一套电脑编码系统,主要用于显示现代英 ...

  2. SpringCloud 教程 (三)高可用的服务注册中心

    一.准备工作 Eureka can be made even more resilient and available by running multiple instances and asking ...

  3. centos6.X mysql 5.1 主主配置

    1.配置文件 A库的配置文件: 在 /etc/my.cnf [mysqld] 段 新增: server_id= # log_bin 日志路径.格式以及删除时间(30天) log_bin=/var/li ...

  4. ORACLE查询隐含参数

    查询隐含参数:col name for a30col VALUE for a10col DESCRIB for a40set lines 200SELECT x.ksppinm NAME, y.ksp ...

  5. sqlite时间类型

    SQLite分页显示:Select * From news order by id desc Limit 10 Offset 10这篇文章是根据 SQLite 官方 WIKI 里的内容翻译,如果有什么 ...

  6. Vue实现音乐播放器(七):轮播图组件(二)

    轮播图组件 <template> <div class="slider" ref="slider"> <div class=&qu ...

  7. spring集成mongodb通过aop记录业务日志

    1. 编辑 pom.xml 添加 maven 依赖 <!-- mongodb --> <dependency> <groupId>org.mongodb</g ...

  8. JS 弹出网页 (不显示地址栏,工具栏) 网页去掉地址栏

    JS 弹出网页 (不显示地址栏,工具栏) 网页去掉地址栏 window.open()支持环境: JavaScript1.0+/JScript1.0+/Nav2+/IE3+/Opera3+ 基本语法: ...

  9. 阶段1 语言基础+高级_1-3-Java语言高级_03-常用API第二部分_第5节 StringBuilder类_1_StringBuilder的原理

    字符串不可变.字符串的缓冲区是可以变的 字符串Sting的底层,被final修饰的不可变的数组 a+b+c最终会产生5个字符串

  10. adbl连接不上 daemon not running. starting it now on port 5037 ADB server didn't ACK

     http://blog.csdn.net/prettyice2005/article/details/38682443 adbl连接不上 daemon not running. starting i ...