luogu P4631 [APIO2018] Circle selection 选圆圈
那个当前半径最大的圆可以用堆维护.这道题一个想法就是优化找和当前圆有交的圆的过程.考虑对于所有圆心建KD-tree,然后在树上遍历的找这样的点.只要某个点子树内的点构成的矩形区域到当前圆心的最近距离\(>2\)倍半径就不用找了
然而在loj上过不去,这时就可以用一个很鸡贼的优化,对于所有点绕原点旋转一定角度,然后就跑的过了(可能是全在一条直线上建KD-tree会出锅(雾)).稍微注意精度误差就行了
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double
using namespace std;
const int N=3e5+10;
const LL inf=1ll<<61;
const db eps=1e-3,tpd=sqrt(2)/2;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int nd;
struct point
{
db d[2];
int i;
bool operator < (const point &bb) const {return fabs(d[nd]-bb.d[nd])>eps?d[nd]<bb.d[nd]:i<bb.i;}
}a[N],b[N],qwq;
struct cir
{
point p;
db r;
bool operator < (const cir &bb) const {return fabs(r-bb.r)>eps?r<bb.r:p.i>bb.p.i;}
}c[N];
priority_queue<cir> hp;
int n,m,rt,ch[N][2],an[N],ii;
db mx[N][2],my[N][2];
void bui(int &o,int l,int r,int nnd)
{
if(l>r) return;
if(l==r)
{
o=b[l].i;
mx[o][0]=mx[o][1]=a[o].d[0];
my[o][0]=my[o][1]=a[o].d[1];
return;
}
int mid=(l+r)>>1;
nd=nnd;
nth_element(b+l,b+mid,b+r+1);
o=b[mid].i;
mx[o][0]=mx[o][1]=a[o].d[0];
my[o][0]=my[o][1]=a[o].d[1];
bui(ch[o][0],l,mid-1,nnd^1);
bui(ch[o][1],mid+1,r,nnd^1);
mx[o][0]=min(mx[o][0],min(mx[ch[o][0]][0],mx[ch[o][1]][0]));
mx[o][1]=max(mx[o][1],max(mx[ch[o][0]][1],mx[ch[o][1]][1]));
my[o][0]=min(my[o][0],min(my[ch[o][0]][0],my[ch[o][1]][0]));
my[o][1]=max(my[o][1],max(my[ch[o][0]][1],my[ch[o][1]][1]));
}
db dis(point aa,point bb){return (aa.d[0]-bb.d[0])*(aa.d[0]-bb.d[0])+(aa.d[1]-bb.d[1])*(aa.d[1]-bb.d[1]);}
db expt(int o)
{
if(!o) return inf;
db xx=min(mx[o][1]-qwq.d[0],qwq.d[0]-mx[o][0])<-eps?min(fabs(mx[o][1]-qwq.d[0]),fabs(qwq.d[0]-mx[o][0])):0;
db yy=min(my[o][1]-qwq.d[1],qwq.d[1]-my[o][0])<-eps?min(fabs(my[o][1]-qwq.d[1]),fabs(qwq.d[1]-my[o][0])):0;
return xx*xx+yy*yy;
}
void wk(int o)
{
if(!o||expt(o)>(db)qwq.i*(db)qwq.i+eps) return;
if(!an[o])
{
db rr=(db)qwq.i/2+c[o].r;
if(dis(a[o],qwq)<rr*rr+eps) an[o]=ii;
}
wk(ch[o][0]),wk(ch[o][1]);
}
int main()
{
n=rd();
for(int i=1;i<=n;++i)
{
db xx=rd(),yy=rd();
a[i].d[0]=tpd*xx+tpd*yy,a[i].d[1]=tpd*yy-tpd*xx;
a[i].i=i;
b[i]=a[i];
c[i].p=a[i],c[i].r=rd();
hp.push(c[i]);
}
mx[0][0]=my[0][0]=inf,mx[0][1]=my[0][1]=-inf;
bui(rt,1,n,0);
while("ji ni tai mei")
{
while(!hp.empty()&&an[hp.top().p.i]) hp.pop();
if(hp.empty()) break;
cir cc=hp.top();
hp.pop();
ii=cc.p.i;
qwq=cc.p,qwq.i=cc.r*2;
wk(rt);
}
for(int i=1;i<=n;++i) printf("%d ",an[i]);
return 0;
}
luogu P4631 [APIO2018] Circle selection 选圆圈的更多相关文章
- 【LG4631】[APIO2018]Circle selection 选圆圈
[LG4631][APIO2018]Circle selection 选圆圈 题面 洛谷 题解 用\(kdt\)乱搞剪枝. 维护每个圆在\(x.y\)轴的坐标范围 相当于维护一个矩形的坐标范围为\([ ...
- [Luogu4631][APIO2018] Circle selection 选圆圈
Luogu 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2,...,c_n\) .我们尝试对这些圆运行这个算法: \(1\).找到这些圆中半径最大的.如果有多个半径最大的圆,选择 ...
- [APIO2018] Circle selection 选圆圈(假题解)
题面 自己去\(LOJ\)上找 Sol 直接排序然后\(KDTree\)查询 然后发现\(TLE\)了 然后把点旋转一下,就过了.. # include <bits/stdc++.h> # ...
- [APIO2018] Circle selection 选圆圈
Description 给出 \(n\) 个圆 \((x_i,y_i,r_i)\) 每次重复以下步骤: 找出半径最大的圆,并删除与这个圆相交的圆 求出每一个圆是被哪个圆删除的 Solution \(k ...
- 洛谷4631 [APIO2018] Circle selection 选圆圈 (KD树)
qwq纪念AC450 一开始想这个题想复杂了. 首先,正解的做法是比较麻烦的. qwqq 那么就不如来一点暴力的东西,看到平面上点的距离的题,不难想到\(KD-Tree\) 我们用类似平面最近点对那个 ...
- [APIO2018]Circle selection
https://www.zybuluo.com/ysner/note/1257597 题面 在平面上,有\(n\)个圆,记为\(c_1,c_2,...,c_n\).我们尝试对这些圆运行这个算法: 找到 ...
- 【APIO2018】选圆圈(平面分块 | CDQ分治 | KDT)
Description 给定平面上的 \(n\) 个圆,用三个参数 \((x, y, R)\) 表示圆心坐标和半径. 每次选取最大的一个尚未被删除的圆删除,并同时删除所有与其相切或相交的圆. 最后输出 ...
- 「APIO2018选圆圈」
「APIO2018选圆圈」 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2, \ldots, c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径 ...
- 【LOJ2586】【APIO2018】选圆圈 CDQ分治 扫描线 平衡树
题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1,c_2,\ldots,c_n\) .我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径最大的圆,选择编号最小的.记为 \ ...
随机推荐
- What’s up with the Graph Laplacian
What's up with the Graph Laplacian? 来源 作者:Jeremy Kun blog: Math ∩ Programming 在数学上图和与图关联的某些矩阵的代数性质有很 ...
- 分布式-信息方式-ActiveMQ的集群
ActiveMQ的集群Queue consumer clusters ActiveMQ支持 Consumer对消息高可靠性的负载平衡消费,如果一个 Consumer死掉,该消 ...
- 分布式-信息方式-ActiveMQ的静态网络连接
ActiveMQ的静态网络连接 在一台服务器上启动多个Broker步骤如下:1:把整个conf文件夹复制一份,比如叫做conf22:修改里面的 activ ...
- 自动化部署脚本--linux执行sh脚本
自动化部署脚本文件目录: 运行主程序:./install.sh #!/bin/bash SCRIPTPATH=$(cd "$(dirname "$0")"; p ...
- Docker入门-常用命令
Docker镜像操作 Docker运行容器前需要本地存在对应的镜像,如果本地不存在该镜像,Docker会从镜像仓库下载该镜像. 获取镜像 从Docker镜像仓库获取镜像的命令是docker pull. ...
- git 更改远程仓库地址,强行推送远程仓库
强行推送远程仓库 #把一个现有的工程拷贝一份 #去掉远程仓库关联 git remote rm origin #添加远程仓库关联 git remote add origin http://xxx.git ...
- 2019年6月Github最新开源java项目
目录 1.halo,这是一个轻快,简洁,功能强大,使用Java开发的博客系统. 2.jeecg-boot 3.CS-Notes 4.JavaGuide 5.advanced-java 6.mall-l ...
- Running .sh scripts in Git bash
Running .sh scripts in Git bash Let's say you have a script script.sh. To run it (using Git Bash), y ...
- php array function
说明:不特殊说明都支持php4,5,7 参考:https://www.php.net/manual/zh/ref.array.php is_array ( mixed $var ) : bool ...
- internetwork 与 the Internet的区别
internetwork 表示:互连网络 the Internet 表示:因特网