题目链接:https://www.lintcode.com/problem/tower-of-hanoi/description

题目大意

  经典递归问题。

分析

  由于是经典问题了,这里不讨论用递归实现,也不讨论用栈模拟实现,只讨论纯迭代实现。
  首先用 L, M, R 来标记左柱子,中柱子,右柱子。
  我们知道汉诺塔问题与二进制是密不可分的,“n-圆盘汉诺塔问题”最少只需要$2^n - 1$步,而且如果 n 为奇数,第一步必然是 L->R;如果 n 为偶数,第一步必然是 L->M。
  现在我们定义三个操作,每个操作相当于走一步:
  1. 把 M 标记和 R 标记互换,执行 L->R。
  2. 把 L 标记和 M 标记互换,执行 L->R。
  3. 把 L 标记和 M 标记互换,把 M 标记和 R 标记互换,执行 L->R。

  于是这个问题可以这样解决,去掉第一步,还剩$2^n - 2$步,如果我们把走两步算作一大步,那么还剩$2^{n - 1} - 1$大步,我们令$i:1\rightarrow2^{n - 1} - 1$依次模拟每个大步,如果 i 的最低 2 进制位的位置是偶数位置时,就执行 2 次操作 3,否则执行 1 次操作 1 和 1 次操作 2。

  神奇的是,这样做居然是可行的。

  PS:我是不知道为啥,我是闲着无聊找规律找到的。

代码如下

 class Solution {
public:
string L = "A", M = "B", R = "C";
vector< string > ans;
/**
* @param n: the number of disks
* @return: the order of moves
*/
vector<string> towerOfHanoi(int n) {
if(n % == ) swap(M, R);
ans.push_back(step(L, R)); n = ((( << n) - ) >> );
for(int i = ; i <= n; ++i) {
// 如果i的最低2进制位的位置是偶数,就执行2次操作3,否则执行1次操作1和一次操作2
if(__builtin_ffs(i) % == ) {
op3();
op3();
}
else {
op1();
op2();
}
} return ans;
} inline string step(string x, string y) {
return "from " + x + " to " + y;
} inline void op1() {
swap(M, R);
ans.push_back(step(L, R));
} inline void op2() {
swap(L, M);
ans.push_back(step(L, R));
} inline void op3() {
swap(M, L); swap(R, M);
ans.push_back(step(L, R));
}
};

LintCode 汉诺塔的更多相关文章

  1. 【LintCode·容易】用栈模拟汉诺塔问题

    用栈模拟汉诺塔问题 描述 在经典的汉诺塔问题中,有 3 个塔和 N 个可用来堆砌成塔的不同大小的盘子.要求盘子必须按照从小到大的顺序从上往下堆 (如:任意一个盘子,其必须堆在比它大的盘子上面).同时, ...

  2. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  3. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  4. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  5. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  6. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  7. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  8. fzu1036四塔问题(汉诺塔问题拓展)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int ru ...

  9. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

随机推荐

  1. php打包下载文件

    使用前请先开启:查看下php.ini里面的extension=php_zip.dll前面的分号有没有去掉; $zip=new \ZipArchive(); $zifile = 'download/' ...

  2. 使用js在页面上新建文件夹

    使用js在页面上新建文件夹 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  3. yum常见问题

    --> Finished Dependency Resolution Error: Multilib version problems found. This often means that ...

  4. python-并发编程之进程

    进程 python中创建进程模块为:multiprocessing 开销非常大 是计算机中资源分配的最小单位(内存隔离) 能利用多个CPU 由操作系统控制 同时操作内存之外的数据会产生数据的不安全 进 ...

  5. 转 关于Raid0,Raid1,Raid5,Raid10的总结

    关于Raid0,Raid1,Raid5,Raid10的总结   RAID0 定义: RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能.RAID 0提高存储性能 ...

  6. ArangoDB 的graph查询

    一个graph包含vertices 和edges.edges被存储在edges document当中.vertices可以是document collection 中的document也可以是edge ...

  7. spark复习总结02

    1.spark执行原理图 spark程序启动后创建sparkContext作为程序的入口,sparkContext可以与不同类的集群资源管理器(Cluster Manager)进行通信,从而获得程序运 ...

  8. CF1223D

    CF1223D 不需要动的一定值域连续 #include<iostream> #include<cstring> #include<cstdio> #include ...

  9. vue中checkbox 样式自定义重写;循环遍历checkbox,拿到不同的v-model绑定值;及获取当前checked 状态,全选和全不选等功能。

    开始写这个功能,不得不吐槽原始的checkbox,灰色小方块的丑陋,虽说eleUI,mintUI,等各种框架的单复选框已经对其优化,但还是不想要这种.那我们就来研究一下怎么处理它. <secti ...

  10. aiohttp上报405: Method Not Allowed

    请求方式不对,修改为“POST”或者“GET” 可参考:https://blog.csdn.net/yiifaa/article/details/80928487