Luogu P1864 [NOI2009]二叉查找树
题目
\(v\)表示权值,\(F\)表示频率。
首先我们显然可以把这个权值离散化。
然后我们想一下,这个东西它是一棵树对吧,但是我们改变权值会引起其树形态的改变,这样很不好做,所以我们考虑把它转化为序列上的问题。
我们知道这是一个treap对吧,所以它的中序遍历的数据值是递增的,我们考虑这个性质入手,把所有点按数据值从小到大排序,那么连续一段点在树上显然是一个连通块。
设\(f_{i,j,o}\)表示只考虑\([i,j]\)的点,在所有权值\(\ge o\)的情况下的最小答案。那么我们就可以枚举权值和区间,再枚举这个区间的点构成的树的根进行转移了。
设枚举的根为\(k\),那么我们需要满足区间内其它点的权值都比它大。
转移分为两种:
\(1.(v_k\ge o):f_{i,j,o}=\min(f_{i,j,o},f_{i,k-1,v_k}+f_{k+1,j,v_k}+\sum\limits_{p=i}^j F_p)\)
\(2.f_{i,j,o}=\min(f_{i,j,o},f_{i,k-1,o}+f_{k+1,j,o}+\sum\limits_{p=i}^j F_p+K)\)
#include<bits/stdc++.h>
using namespace std;
const int N=73;
struct node{int x,v,f;}a[N];
int operator<(node a,node b){return a.x<b.x;}
int f[N][N][N],t[N];
int read(){int x;cin>>x;return x;}
void min(int &a,int b){a=a<b? a:b;}
int main()
{
int i,j,k,o,n=read(),K=read();memset(f,63,sizeof f);
for(i=1;i<=n;++i) a[i].x=read();
for(i=1;i<=n;++i) t[i]=a[i].v=read();
for(i=1;i<=n;++i) a[i].f=read();
sort(a+1,a+n+1),sort(t+1,t+n+1);
for(i=1;i<=n;++i) a[i].v=lower_bound(t,t+n+1,a[i].v)-t;
for(i=2;i<=n;++i) a[i].f+=a[i-1].f;
for(i=1;i<=n+1;++i) for(j=0;j<=n;++j) f[i][i-1][j]=0;
for(o=n;~o;--o)
for(i=n;i;--i)
for(j=i;j<=n;++j)
for(k=i;k<=j;++k)
{
if(a[k].v>=o) min(f[i][j][o],f[i][k-1][a[k].v]+f[k+1][j][a[k].v]+a[j].f-a[i-1].f);
min(f[i][j][o],f[i][k-1][o]+f[k+1][j][o]+K+a[j].f-a[i-1].f);
}
cout<<f[1][n][0];
}
Luogu P1864 [NOI2009]二叉查找树的更多相关文章
- P1864 [NOI2009]二叉查找树
链接P1864 [NOI2009]二叉查找树 这题还是蛮难的--是我菜. 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质: 首先不管怎么转,中序遍历是确定的,所 ...
- [洛谷P1864] NOI2009 二叉查找树
问题描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...
- 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$
正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...
- BZOJ 1564: [NOI2009]二叉查找树( dp )
树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...
- bzoj 1564 [NOI2009]二叉查找树 区间DP
[NOI2009]二叉查找树 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 906 Solved: 630[Submit][Status][Discu ...
- [Luogu 1963] NOI2009 变换序列
[Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...
- [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp
1564: [NOI2009]二叉查找树 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 879 Solved: 612[Submit][Status] ...
- 题解 P1864 【[NOI2009]二叉查找树】
#include<cstdio> #include<string> #include<cstring> #include<iostream> #incl ...
- NOI2009 二叉查找树 【区间dp】
[NOI2009]二叉查找树 [问题描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左子树结点的数据值大,而比它右子树结点的数据值小.另一方面,这棵查找树中每个结点都有 ...
随机推荐
- 【ZJOJ1321】灯
题目 贝希和她的闺密们在她们的牛棚中玩游戏.但是天不从人愿,突然,牛棚的电源跳闸了,所有的灯都被关闭了.贝希是一个很胆小的女生,在伸手不见拇指的无尽的黑暗中,她感到惊恐,痛苦与绝望.她希望您能够帮帮她 ...
- layui table 改
F.prototype.pullData = function(e) { success: function (t) { var da001 = i; window.getdata1234567(da ...
- 2018山东省赛 H Dominoes ( 搜索 )
题目链接 题意 : 给出一个 n * m 的矩阵,用规格 1 * 2 的多米诺去填充,题目数据保证最后只有一个格子是空白的(即没有被多米诺骨牌覆盖),问你现在通过移动多米诺能够产生多少种不同的状态(空 ...
- Devexpress MVC Gridview
1. 根据选中的KeyValue 来获取其他field的value // Gridview settings settings.CustomJSProperties = (s, e) => { ...
- sh_04_累加求和
sh_04_累加求和 # 计算 0 ~ 100 之间所有数字的累计求和结果 # 0. 定义最终结果的变量 result = 0 # 1. 定义一个整数的变量记录循环的次数 i = 0 # 2. 开始循 ...
- Java网络编程之Netty服务端ChannelOption.SO_BACKLOG配置
ChannelOption.SO_BACKLOG对应的是tcp/ip协议listen函数中的backlog参数,函数listen(int socketfd,int backlog)用来初始化服务端可连 ...
- 满减 HRBUST - 2455
https://vjudge.net/problem/HRBUST-2455 有两种优惠方式,一是满400减100,另外一种是商品自带折扣,二者不可叠加 dp[i][j]表示前i种商品,(参与满400 ...
- sqli-labs(19)
百度了一下 基于错误的referer头的注入 0X01爱之初体验 猜测是基于referer头的注入 我们在referer后面加入单引号测试一下 真的报错了诶 那我们猜测一下 他应该是把 referer ...
- Maven构建生命周期
以下引用官方的生命周期解释https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html: 一.构建生命 ...
- spring cloud:config-eureka-refresh
config-server-eureka project 1. File-->new spring project 2.add dependency <parent> <gro ...