[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

题面

我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案。求最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

\[N,K,L,H \leq 10^9,H-L \leq 10^5
\]

分析

\(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了求gcd=1的方案数

设\(f(x)\)表示区间[l,r]里选n个数,gcd为x的方案数

设\(F(x)\)表示区间[l,r]里选n个数,gcd被x整除的方案数

\(\because x|\gcd(i,j),\therefore x|i,x|j\)

[l,r]里被x整除的数有\((\lfloor \frac{r}{x} \rfloor-\lfloor \frac{l-1}{x} \rfloor)\)个

因此\(F(x)=(\lfloor \frac{r}{x} \rfloor-\lfloor \frac{l-1}{x} \rfloor)^n\)

\(F,f\)显然满足莫比乌斯反演的第二种形式,\(F(x)=\sum_{d|x} f(d)\)

\(f(x)=\sum_{x|d} F(d) \mu(\frac{d}{x})\)

我们要求的是

\[f(1)=\sum_{1|d} F(d) \mu(d)=\sum_{d=1}^r \mu(d) (\lfloor \frac{r}{d} \rfloor-\lfloor \frac{l-1}{d} \rfloor)^n
\]

后面的部分可以数论分块然后快速幂求解,但由于\(r \leq 10^9\),不能直接线性筛\(\mu\)的前缀和,需要用杜教筛。


杜教筛:

套路公式:

我们要求\(f\)的前缀和,构造两个函数\(g,h\)满足\(h=f*g\), \(F,G,H\)为它们的前缀和

\[g(1)F(n)=H(n)-\sum_{d=2}^n g(d) F(\frac{n}{d})
\]

如果\(f=\mu\),注意到\(\mu*I=\varepsilon\),那么\(g(n)=I(n)=1,h(n)=\varepsilon(n),H(n)=\varepsilon(1)=1\)

代入得\(F(n)=1-\sum_{d=2}^n F(\frac{n}{d})\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#define maxn 2000000
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,k;
ll A,B; int cnt;
bool vis[maxn+5];
int prime[maxn+5];
int mu[maxn+5];
ll s_mu[maxn+5];
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) s_mu[i]=(s_mu[i-1]+mu[i])%mod;
} map<ll,ll>sum_mu;
ll dujiao_sieve(ll x){
if(x<=maxn) return s_mu[x];
if(sum_mu.count(x)) return sum_mu[x];
ll ans=1;
for(ll l=2,r;l<=x;l=r+1){
r=x/(x/l);
ans-=(r-l+1)*dujiao_sieve(x/l)%mod;
ans=(ans+mod)%mod;
}
sum_mu[x]=ans;
return ans;
} inline ll fast_pow(ll x,ll k){
ll ans=1;
while(k){
if(k&1) ans=ans*x%mod;
x=x*x%mod;
k>>=1;
}
return ans;
} int main(){
sieve(maxn);
scanf("%d %d %lld %lld",&n,&k,&A,&B);
A=(A-1)/k;
B/=k;
ll ans=0;
for(ll l=1,r;l<=B;l=r+1){
if(A/l) r=min(A/(A/l),B/(B/l));
else r=B/(B/l);
// printf("%d %d\n",l,r);
ans+=fast_pow(B/l-A/l,n)*(dujiao_sieve(r)-dujiao_sieve(l-1)+mod)%mod;
ans%=mod;
}
printf("%lld\n",ans);
}

[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)的更多相关文章

  1. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  3. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  4. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  5. bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】

    首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...

  6. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  7. P4450-双亲数,P5221-Product,P6055-[RC-02]GCD【莫比乌斯反演,杜教筛】

    除了最后一题都比较简单就写一起了 P4450-双亲数 题目链接:https://www.luogu.com.cn/problem/P4450 题目大意 给出\(A,B,d\)求有多少对\((a,b)\ ...

  8. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  9. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

随机推荐

  1. Win10看图总有遮挡?如何找回好用的照片查看器

    来,大家日常在电脑上查看图片是用什么软件?老牌的ACDSee.XXX看图王.美图看看还是Win系统自带的呢?反正小编在没什么特殊需要的时候,只用系统自带,免除安装.功能够用,想要进行处理也能用Win自 ...

  2. C#内存占用释放

    序言 系统启动起来以后,内存占用越来越大,使用析构函数.GC.Collect什么的也不见效果,后来查了好久,找到了个办法,就是使用 SetProcessWorkingSetSize函数.这个函数是Wi ...

  3. Java多级文件夹上传

    javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1.通过form表单向后端发送请求 <form id=" ...

  4. HDU 6578 Blank

    hdu题面 Time limit 1000 ms Memory limit 262144 kB OS Windows Source 2019 Multi-University Training Con ...

  5. java agent问题

    Error occurred during initialization of VMagent library failed to init: instrumentobjc[36987]: Class ...

  6. Android开源SlidingMenu的使用

    一.SlidingMenu简介 SlidingMenu是最常用的几个开源项目之一. GitHub上的开源项目Slidingmenu提供了最佳的实现:定制灵活.各种阴影和渐变以及动画的滑动效果都不错.不 ...

  7. Spring Boot教程(十九)RESTful API单元测试

    下面针对该Controller编写测试用例验证正确性,具体如下.当然也可以通过浏览器插件等进行请求提交验证. @RunWith(SpringJUnit4ClassRunner.class) @Spri ...

  8. A - 地震预测

    A - 地震预测 怀特先生是一名研究地震的科学家,最近他发现如果知道某一段时间内的地壳震动能量采样的最小波动值之和,可以有效地预测大地震的发生. 假设已知一段时间的n次地壳震动能量的采样值为a1,a2 ...

  9. 浏览器HTML5录音功能

    一.浏览器HTML5录音功能 二.业务代码 <!DOCTYPE html> <html> <head> <meta http-equiv="Cont ...

  10. js运行原理

    https://www.youtube.com/watch?v=8aGhZQkoFbQ