[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
题面
我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案。求最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
\]
分析
\(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了求gcd=1的方案数
设\(f(x)\)表示区间[l,r]里选n个数,gcd为x的方案数
设\(F(x)\)表示区间[l,r]里选n个数,gcd被x整除的方案数
\(\because x|\gcd(i,j),\therefore x|i,x|j\)
[l,r]里被x整除的数有\((\lfloor \frac{r}{x} \rfloor-\lfloor \frac{l-1}{x} \rfloor)\)个
因此\(F(x)=(\lfloor \frac{r}{x} \rfloor-\lfloor \frac{l-1}{x} \rfloor)^n\)
\(F,f\)显然满足莫比乌斯反演的第二种形式,\(F(x)=\sum_{d|x} f(d)\)
\(f(x)=\sum_{x|d} F(d) \mu(\frac{d}{x})\)
我们要求的是
\]
后面的部分可以数论分块然后快速幂求解,但由于\(r \leq 10^9\),不能直接线性筛\(\mu\)的前缀和,需要用杜教筛。
杜教筛:
套路公式:
我们要求\(f\)的前缀和,构造两个函数\(g,h\)满足\(h=f*g\), \(F,G,H\)为它们的前缀和
\[g(1)F(n)=H(n)-\sum_{d=2}^n g(d) F(\frac{n}{d})
\]
如果\(f=\mu\),注意到\(\mu*I=\varepsilon\),那么\(g(n)=I(n)=1,h(n)=\varepsilon(n),H(n)=\varepsilon(1)=1\)
代入得\(F(n)=1-\sum_{d=2}^n F(\frac{n}{d})\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#define maxn 2000000
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,k;
ll A,B;
int cnt;
bool vis[maxn+5];
int prime[maxn+5];
int mu[maxn+5];
ll s_mu[maxn+5];
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
prime[++cnt]=i;
mu[i]=-1;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) s_mu[i]=(s_mu[i-1]+mu[i])%mod;
}
map<ll,ll>sum_mu;
ll dujiao_sieve(ll x){
if(x<=maxn) return s_mu[x];
if(sum_mu.count(x)) return sum_mu[x];
ll ans=1;
for(ll l=2,r;l<=x;l=r+1){
r=x/(x/l);
ans-=(r-l+1)*dujiao_sieve(x/l)%mod;
ans=(ans+mod)%mod;
}
sum_mu[x]=ans;
return ans;
}
inline ll fast_pow(ll x,ll k){
ll ans=1;
while(k){
if(k&1) ans=ans*x%mod;
x=x*x%mod;
k>>=1;
}
return ans;
}
int main(){
sieve(maxn);
scanf("%d %d %lld %lld",&n,&k,&A,&B);
A=(A-1)/k;
B/=k;
ll ans=0;
for(ll l=1,r;l<=B;l=r+1){
if(A/l) r=min(A/(A/l),B/(B/l));
else r=B/(B/l);
// printf("%d %d\n",l,r);
ans+=fast_pow(B/l-A/l,n)*(dujiao_sieve(r)-dujiao_sieve(l-1)+mod)%mod;
ans%=mod;
}
printf("%lld\n",ans);
}
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)的更多相关文章
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛
link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- P4450-双亲数,P5221-Product,P6055-[RC-02]GCD【莫比乌斯反演,杜教筛】
除了最后一题都比较简单就写一起了 P4450-双亲数 题目链接:https://www.luogu.com.cn/problem/P4450 题目大意 给出\(A,B,d\)求有多少对\((a,b)\ ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
随机推荐
- 【NOIP2014模拟8.24】小X 的道路修建
题目 因为一场不小的地震,Y 省n 个城市之间的道路都损坏掉了,省长希望小X 将城市之间的道路重修一遍. 很多城市之间的地基都被地震破坏导致不能修路了,因此可供修建的道路只有m 条.因为施工队伍有限, ...
- 导入本地Excel到DataSet中
/// <summary> /// 导入本地Excel到DataSet中 /// </summary> /// <param name="strFileSour ...
- sh_04_累加求和
sh_04_累加求和 # 计算 0 ~ 100 之间所有数字的累计求和结果 # 0. 定义最终结果的变量 result = 0 # 1. 定义一个整数的变量记录循环的次数 i = 0 # 2. 开始循 ...
- Anaconda是如何进行版本管理的?
创建不同的environments,在电脑中会有不同的文件夹 然后,当使用conda下载时,会下载到不同的env文件夹下(提前进行env切换) 那么不是在anaconda prompt命令行下下载的呢 ...
- javac不是内部或外部命令在win10上的解决方案
Path环境变量能够让你在任何路径都能使用命令,可能你百度谷歌了各种方案都无法解决javac无法使用的问题,那么你可以试试如下解决方案: 首先博主配置了JAVA_HOME 参数为 C:\Program ...
- jenkins 打标签实现回滚
背景介绍: 本项目代码存储在gitlab,再通过jenkins发布到对应的节点上. 使用tag控制版本:每一次成功的构建,jenkins会自动为gitlab的分支打上tag,版本更新可直接选择prod ...
- C++二维数组(指针)做参数
一.问题描述 使用C++编程过程中经常需要使用到二维数组,然而初级程序员在使用过程中经常会出错使程序崩溃.下面就二维指针的定义,初始化,以及二维指针做参数给出简单介绍. 1.二维数组的定义与初始化 在 ...
- i++ 是线程安全的吗
相信很多中高级的 Java 面试者都遇到过这个问题,很多对这个不是很清楚的肯定是一脸蒙逼.内心肯定还在质疑,i++ 居然还有线程安全问题?只能说自己了解的不够多,自己的水平有限. 先来看下面的示例来验 ...
- nginx下的负载均衡
负载均衡应用场景: 普通web应用部署到多台应用服务器上,客户端通过访问应用服务器发送请求,最简单的就是n对1模式,n个客户端访问同一个应用服务器,这种情况当并发量大了,就无法应对,而且,如果只有一台 ...
- Python的 counter内置函数,统计文本中的单词数量
counter是 colletions内的一个类 可以理解为一个简单的计数 import collections str1=['a','a','b','d'] m=collections.Counte ...