模意义下的FFT算法
//写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记
令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT。定义两个长度为N的实序列g[n]和h[n]为
g[n]=v[2n], h[n]=v[2n+1], 0<=n<N
则可进行如下推导

这里所用的FFT算法能够实现O(nlogn)复杂度的离散傅里叶变换和上面最后所得的关系密切相关。
下面进入正题——模意义下的FFT
还是需要先了解一下关于 复序列的DFT的对称性质及一些补充定义

由此,可以试想,假设说要模的素数p为1e8级别大小,那么我们可以把原始的实序列x[n]“拆”一下。
下面假设我们要求的是x[n]卷积y[n]的结果t[n]。
假设q是sqrt(p)级别的一个数,我们可以把x[n]/q存到复序列x1[n]的实部,x[n]%q存到复序列x1[n]的虚部。这时,对x1[n]、y1[n]求DFT,再由X1[k]*Y1[k]得到T1[k],整个运算过程中能够产生的最大浮点数为N*q^2级别,一般来说还是在可以接受的范围内的。
接下来考虑从卷积结果{T1[k]}中恢复出原始的t[n]的过程。
看一下T1[k]的组成

到这里差不多就可以结束了。发现上面最后一行等号右边有四个“乘积”,我们可以把上面四个乘积分别单独拿出来,求IDFT就可以恢复出x/y_re/im卷积的结果,之后针对不同的乘积,考虑需要在模p意义下乘上q^2、q^1或q^0,来进行恢复就可以了。
奉上模板
namespace FFT_MO //前面需要有 mod(1e8~1e9级别),upmo(a,b) 的定义
{
const int FFT_MAXN=<<;
const db pi=.14159265358979323846264338327950288L;
struct cp
{
db a,b;
cp(double a_=,double b_=)
{
a=a_,b=b_;
}
cp operator +(const cp&rhs)const
{
return cp(a+rhs.a,b+rhs.b);
}
cp operator -(const cp&rhs)const
{
return cp(a-rhs.a,b-rhs.b);
}
cp operator *(const cp&rhs)const
{
return cp(a*rhs.a-b*rhs.b,a*rhs.b+b*rhs.a);
}
cp operator !()const
{
return cp(a,-b);
}
}nw[FFT_MAXN+],f[FFT_MAXN],g[FFT_MAXN],t[FFT_MAXN]; //a<->f,b<->g,t<~>c
int bitrev[FFT_MAXN]; void fft_init() //初始化 nw[],bitrev[]
{
int L=;while((<<L)!=FFT_MAXN) L++;
for(int i=;i<FFT_MAXN;i++) bitrev[i]=bitrev[i>>]>>|((i&)<<(L-));
for(int i=;i<=FFT_MAXN;i++) nw[i]=cp((db)cosl(*pi/FFT_MAXN*i),(db)sinl(*pi/FFT_MAXN*i));
} // n已保证是2的整数次幂
// flag=1:DFT | flag=-1: IDFT
void dft(cp *a,int n,int flag=)
{
int d=;while((<<d)*n!=FFT_MAXN) d++;
for(int i=;i<n;i++) if(i<(bitrev[i]>>d))
swap(a[i],a[bitrev[i]>>d]);
for(int l=;l<=n;l<<=)
{
int del=FFT_MAXN/l*flag; // 决定 wn是在复平面是顺时针还是逆时针变化,以及变化间距
for(int i=;i<n;i+=l)
{
cp *le=a+i,*ri=a+i+(l>>);
cp *w=flag==? nw:nw+FFT_MAXN; // 确定wn的起点
for(int k=;k<(l>>);k++)
{
cp ne=*ri * *w;
*ri=*le-ne,*le=*le+ne;
le++,ri++,w+=del;
}
}
}
if(flag!=) for(int i=;i<n;i++) a[i].a/=n,a[i].b/=n;
} // convo(a,n,b,m,c) a[0..n]*b[0..m] -> c[0..n+m]
void convo(LL *a,int n,LL *b,int m,LL *c)
{
for(int i=;i<=n+m;i++) c[i]=;
int N=;while(N<=n+m) N<<=; // N是c扩展后的长度
for(int i=;i<N;i++) //扩展 a[],b[] ,存入f[],g[],注意取模
{
LL aa=i<=n?a[i]:,bb=i<=m? b[i]:;
aa%=mod,bb%=mod;
f[i]=cp(db(aa>>),db(aa&));
g[i]=cp(db(bb>>),db(bb&));
}
dft(f,N),dft(g,N);
for(int i=;i<N;i++) // 恢复虚部两个“乘积”(乘积具体意义见上文)
{
int j=i? N-i:;
t[i]=((f[i]+!f[j])*(!g[j]-g[i])+(!f[j]-f[i])*(g[i]+!g[j]))*cp(,0.25);
}
dft(t,N,-);
for(int i=;i<=n+m;i++) upmo(c[i],(LL(t[i].a+0.5))%mod<<);
for(int i=;i<N;i++) // 恢复实部两个“乘积”
{
int j=i? N-i:;
t[i]=(!f[j]-f[i])*(!g[j]-g[i])*cp(-0.25,)+cp(,0.25)*(f[i]+!f[j])*(g[i]+!g[j]);
}
dft(t,N,-);
for(int i=;i<=n+m;i++) upmo(c[i],LL(t[i].a+0.5)+(LL(t[i].b+0.5)%mod<<));
}
}
模板
举个栗子~ hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】
//本博客主要参考资料:数字信号处理——基于计算机的方法(第四版) [美] Sanjit K. Mitra 著 余翔宇 译
转载请注明出处 http://www.cnblogs.com/Just--Do--It/p/7892254.html
谢谢阅读
模意义下的FFT算法的更多相关文章
- hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】
题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...
- Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)
链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...
- 高斯消元求主元——模意义下的消元cf1155E
#include <bits/stdc++.h> , MO = ; ; inline int qpow(int a, int b) { ; while(b) { ) { ans = 1ll ...
- FFT算法的物理意义
FFT是离散傅立叶变换的高速算法,能够将一个信号变换到频域.有些信号在时域上是非常难看出什么特征的,可是如果变换到频域之后,就非常easy看出特征了.这就是非常多信号分析採用FFT变换的原因.另外,F ...
- FFT算法详解
啊…本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致qwqqwqqwq 好的,那我们就开始我们的飞飞兔FFTFFTFFT算法吧! 偷偷说一句,FFTFFTFFT的代 ...
- 基于verilog的FFT算法8点12位硬件实现
FFT算法8点12位硬件实现 (verilog) 1 一.功能描述: 1 二.设计结构: 2 三.设计模块介绍 3 1.蝶形运算(第一级) 3 2.矢量角度旋转(W) 4 3.CORDIC 结果处理 ...
- FFT算法
FFT算法的完整DSP实现 傅里叶变换或者FFT的理论参考: [1] http://www.dspguide.com/ch12/2.htm The Scientist and Engineer's G ...
- msp430学习笔记-实现开方log等计算及FFT算法(待续)
MSP430 FFT算法实现 http://bbs.21ic.com/icview-391532-1-1.html http://blog.sina.com.cn/s/blog_6cd2030b010 ...
- FFT算法的完整DSP实现
傅里叶变换或者FFT的理论参考: [1] http://www.dspguide.com/ch12/2.htm The Scientist and Engineer's Guide to Digita ...
随机推荐
- CentOS配置java环境,mysql数据库等文章链接
配置jdk 配置jdk 安装mysql8 yum install -y mysql-community-server 安装mysql8 安装redi 安装redis 安装docker 安装docker
- 天勤考研数据结构笔记—栈的C语言实现
栈的基本概念 栈的定义:栈是一种只能在一端进行插入或删除操作的线性表.其中允许进行插入或删除的一端称为栈顶(top).栈顶是由一个称为栈顶指针的位置指示器(其实就是一个变量,对于顺序栈,就是数组索引, ...
- [HAOI2016]字符合并
Luogu3736 很容易想到直接DP,关键是枚举顺序. \(1.\)设后一段构成最后一个点,前一段构成前面的点,那么能得到\(1\)个点的数量要求 : \(1,k,2k-1...\)相差\(k-1\ ...
- [c++] 计算太阳高度角
/* 输入参数: Longitude - 经度(单位"度") Latitude - 纬度(单位"度") Year - 年 Month - 月 Day - 日 H ...
- Storm消费Kafka提交集群运行
1.创建拓扑,配置KafkaSpout.Bolt KafkaTopologyBasic.java: package org.mort.storm.kafka; import org.apache.ka ...
- java 如何编写多线程的代码
线程是干活的所以线程一定是Thread,或者改线程实现Runnable接口多线程是竞争关系,所以多个线程竞争同一个资源,也就是同一个对象所以这个竞争对象发到Thread中即: // resources ...
- golang中格式化符号说明
%v 值的默认格式表示 %+v 类似%v,但输出结构体时会添加字段名 %#v 值的Go语法表示 %T 值的类型的Go语法表示 %% 百分号 布尔值: %t 单词true或false 整数: %b 表示 ...
- 关于NGINX在wnidows下面和linux下面的多站点的反向代理的配置
原创文章,转载注明出处 nginx作为一款优秀的反向代理软件,以其好用,易于搭建负载均衡的网站集群而著称,这里分别记录一下工作中用到nginx作为负载以及多站点发布的时候一些配置和注意事项 一 ng ...
- 安装kubuctl
安装和设置kubectl 使用Kubernetes命令行工具kubectl在Kubernetes上部署和管理应用程序.使用kubectl,可以检查集群资源; 创建,删除和更新组件. 以下是安装kube ...
- 算法分析方法之平摊分析(Amotized Analysis)