82、TensorFlow教你如何构造卷积层
'''
Created on 2017年4月22日 @author: weizhen
'''
import tensorflow as tf
#通过tf.get_variable的方式创建过滤器的权重变量和偏置变量,上面介绍了卷积层
#的参数个数只和过滤器的尺寸、深度以及当前层节点矩阵的深度有关,所以这里声明的参数变量
#是一个四维矩阵,前面两个维度代表了过滤器的尺寸,第三个维度表示了当前层的深度。第四个维度表示过滤器的深度
filter_weight=tf.get_variable('weights',[5,5,3,16],initializer=tf.truncated_normal_initializer(stddev=0.1))
#和卷积层的权重类似,当前层矩阵上不同位置的偏置项也是共享的,所以总共有下一层深度个不同的偏置项
biases=tf.get_variable('biases',[16],initializer=tf.constant_initializer(0.1))
#tf.nn.conv2d提供了一个非常方便的函数来实现卷积层前向传播的算法,
#这个函数的第一个输入为当前层的节点矩阵,注意这个矩阵是一个四维矩阵,后面三个维度对应一个节点矩阵
#第一个维度对应一个输入batch。比如在输入层,input[0,:,:,:]表示第一张图片
#input[1,:,:,:]表示第二张图片,以此类推
#tf.nn.conv2d第二个参数提供了卷积层的权重,
#第三个参数为不同维度上的步长。虽然第三个参数提供的是一个长度为4的数组,但是第一维和最后一维的数字
#要求一定是1.这是因为卷积层的步长只对矩阵的长和宽有效。最后一个参数是填充padding的方法
#Tensorflow中提供SAME或是VALID两种选择。其中SAME表示添加全0填充,"VALID"表示不添加
conv=tf.nn.conv2d(input,filter_weight,strides=[1,1,1,1],padding='SAME') #tf.nn.bias_add提供了一个方便的函数给每一个节点加上偏置项,注意这里不能直接使用加法
#因为矩阵上不同位置上的节点都需要加上同样的偏置项
bias=tf.nn.bias_add(conv,biases)
#将计算结果通过ReLU激活函数完成去线性化
actived_conv=tf.nn.relu(bias) #池化层
#tf.nn.max_pool实现了最大化池化层的前向传播过程,它的参数和tf.nn.conv2d函数类似
#ksize提供了过滤器的尺寸,strides提供了步长信息,padding提供了是否使用全0填充
pool=tf.nn.max_pool(actived_conv,ksize=[1,3,3,1],strides=[1,2,2,1],padding='SAME')
卷积层是神经网络中用于对图像提取特征的结构,有点像高斯滤波去对图像进行平滑处理
不过这里的卷积层要提取的是图像的特征,而且提取图像的算子的值是提前没有确定的
需要通过神经网络的训练来给计算出来
82、TensorFlow教你如何构造卷积层的更多相关文章
- tensorflow 1.0 学习:卷积层
在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d conv2d( input, filter, strides, ...
- 81、Tensorflow实现LeNet-5模型,多层卷积层,识别mnist数据集
''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np ...
- TensorFlow与caffe中卷积层feature map大小计算
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...
- 『TensorFlow』卷积层、池化层详解
一.前向计算和反向传播数学过程讲解
- tensorflow 卷积层
TensorFlow 卷积层 让我们看下如何在 TensorFlow 里面实现 CNN. TensorFlow 提供了 tf.nn.conv2d() 和 tf.nn.bias_add() 函数来创 ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- 用TensorFlow教你手写字识别
博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Il ...
- 《TensorFlow实战》中AlexNet卷积神经网络的训练中
TensorFlow实战中AlexNet卷积神经网络的训练 01 出错 TypeError: as_default() missing 1 required positional argument: ...
- TensorFlow框架(4)之CNN卷积神经网络
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对 ...
随机推荐
- LCA 总结
代码: //RMQ求LCA struct node { int v, w; }; class LCA { private: vector<int>dep, pos, olx, dis; v ...
- linux显示文本文件指定行数的数据
sed -n '2,4p' /core/home_info.txt 显示这个txt的2-4行,此外还有 cat /core/home_info.txt | tail -n 1000:显示最后100 ...
- 返回闭包不能引用循环变量,请改写count()函数,让它正确返回能计算1x1、2x2、3x3的函数。
错误写法: 正确写法:
- Linux操作系统(二)_快速入门
环境 安装VM ware,输入VM key 在VM上安装CentOS 6.5 设置网络,能在本机上ping通 通过终端连接工具:Xshell或SecureCRT,连接Linux服务器 实操可能出现的问 ...
- haskell基本语法
定义新类型 data EmployeeInfo = Employee Int String String [String] deriving(Read, Show, Eq, Ord) Employee ...
- HDU 1028 Ignatius and the Princess III (动态规划)
题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...
- QTP场景恢复函数
public Function RecoveryFunction1(Object, Method, Arguments, retVal) Dim FileName ,TimeNow, ResPath ...
- python post 发送字符串
python post 发送一段字符串 把字符串写在表单里,表单用字典格式,字符串作value import requests data={key:str} r=requests.post(url,d ...
- 蛋疼的 403 Forbidden You don’t have permission to access / on this server.
参考博文: a.http://www.linuxidc.com/Linux/2016-09/134827.htm 这个解释挺好 昨天配置新服务器:以为自己老手 就一步到位结果一直出现 403 For ...
- shell位置参数处理举例