且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!

小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要need(i)张奖券进行兑换,同时也只能兑换一次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。

提示一:合理抽象问题、定义状态是动态规划最关键的一步

提示二:说过了减少时间消耗,我们再来看看如何减少空间消耗

Input

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个正整数N和M,表示奖品的个数,以及小Ho手中的奖券数。

接下来的n行描述每一行描述一个奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。

测试数据保证

对于100%的数据,N的值不超过500,M的值不超过10^5

对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3

Sample Input

5 1000
144 990
487 436
210 673
567 58
1056 897

Sample Output

2099

Output

对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。

01背包例题链接:https://blog.csdn.net/nobleman__/article/details/78128318

01背包详细解析链接:https://www.cnblogs.com/zyacmer/p/9961710.html

//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f
#define mod 1000000007
#define PI acos(-1)
using namespace std;
typedef long long ll ;
int w[509] , val[509];
int dp[509][100009]; int main()
{
/*#ifdef ONLINE_JUDGE
#else
freopen("D:/c++/in.txt", "r", stdin);
freopen("D:/c++/out.txt", "w", stdout);
#endif*/
int n , v ;
scanf("%d%d" , &n , &v);
for(int i = 1 ; i <= n ; i++)
{
scanf("%d%d" , &w[i] , &val[i]);
}
for(int i = 1 ; i <= n ; i++)
{
for(int j = v ; j > 0 ; j--)
{
if(j >= w[i])
{
dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i]]+val[i]);
}
else{
dp[i][j] = dp[i-1][j] ;
}
}
}
printf("%d\n" , dp[n][v]); return 0 ;
}

滚动数组

//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f
#define mod 1000000007
#define PI acos(-1)
using namespace std;
typedef long long ll ;
int w[509] , val[509];
int dp[100009]; int main()
{
/*#ifdef ONLINE_JUDGE
#else
freopen("D:/c++/in.txt", "r", stdin);
freopen("D:/c++/out.txt", "w", stdout);
#endif*/
int n , v ;
scanf("%d%d" , &n , &v);
for(int i = 1 ; i <= n ; i++)
{
scanf("%d%d" , &w[i] , &val[i]);
}
for(int i = 1 ; i <= n ; i++)
{
for(int j = v ; j >= w[i] ; j--)
{
dp[j] = max(dp[j] , dp[j-w[i]]+val[i]);
}
}
printf("%d\n" , dp[v]); return 0 ;
}

dp(01背包问题)的更多相关文章

  1. 动态规划(DP),0-1背包问题

    题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...

  2. 采药 水题 dp 01背包问题 luogu1048

    最基本的01背包,不需要太多解释,刚学dp的同学可以参见dd大牛的背包九讲,直接度娘“背包九讲”即可搜到 #include <cstdio> #include <cstring> ...

  3. dp 0-1背包问题

    0-1背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ),  f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包 ...

  4. 01背包问题之2(dp)

    01背包问题之2 有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 < ...

  5. 普通01背包问题(dp)

    有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi,vi & ...

  6. 01背包问题的延伸即变形 (dp)

    对于普通的01背包问题,如果修改限制条件的大小,让数据范围比较大的话,比如相比较重量而言,价值的范围比较小,我们可以试着修改dp的对象,之前的dp针对不同的重量限制计算最大的价值.这次用dp针对不同的 ...

  7. PAT 甲级 1068 Find More Coins (30 分) (dp,01背包问题记录最佳选择方案)***

    1068 Find More Coins (30 分)   Eva loves to collect coins from all over the universe, including some ...

  8. DP动态规划之01背包问题

    目录 问题描述 问题分析 问题求解 Java代码实现 优化方向一:时间方面:因为是j是整数是跳跃式的,可以选择性的填表. 思考二:处理j(背包容量),w(重量)不为整数的时候,因为j不为整数了,它就没 ...

  9. DP:0-1背包问题

    [问题描述] 0-1背包问题:有 N 个物品,物品 i 的重量为整数 wi >=0,价值为整数 vi >=0,背包所能承受的最大重量为整数 C.如果限定每种物品只能选择0个或1个,求可装的 ...

  10. 0-1背包问题-DP

    中文理解: 0-1背包问题:有一个贼在偷窃一家商店时,发现有n件物品,第i件物品价值vi元,重wi磅,此处vi与wi都是整数.他希望带走的东西越值钱越好,但他的背包中至多只能装下W磅的东西,W为一整数 ...

随机推荐

  1. Linux telnet、nc、ping监测状态

    在工作中会遇到网络出现闪断丢包的情况,最终影响业务工常使用.可以业务服务器上发起监测. 1.通过telnet echo  -e  "\n" | telnet localhost 2 ...

  2. window环境下mysql导入sql文件时报错:ERROR: ASCII '\0' appeared in the statement

    错误信息: ERROR: ASCII '\0' appeared in the statement, but this is not allowed unless option --binary-mo ...

  3. nginx安装配置_runoob_阅读笔记_20190917

    Nginx 安装配置_runoob菜鸟教程 Nginx 安装配置 Nginx("engine x")是一款是由俄罗斯的程序设计师Igor Sysoev所开发高性能的 Web和 反向 ...

  4. NODE升级到V12.X.X

    Node.js 是一个基于Chrome JavaScript运行时的平台,可轻松构建快速,可扩展的网络应用程序.最新版本 node.js yum存储库 由其官方网站维护.使用本教程添加yum存储库,并 ...

  5. 吐血整理 | 1000行MySQL学习笔记,不怕你不会,就怕你不学!

    / Windows服务 / / 连接与断开服务器 / / 数据库操作 / ------------------ / 表的操作 / ------------------ / 数据操作 / ------- ...

  6. Dubbo 在跨语言和协议穿透性方向的探索:支持 HTTP/2 gRPC

    Dubbo 在跨语言和协议穿透性方向上的探索:支持 HTTP/2 gRPC 和 Protobuf 本文整理自刘军在 Dubbo 成都 meetup 上分享的<Dubbo 在多语言和协议穿透性方向 ...

  7. PL/SQL 循环

    ----PL/SQL基本循环语句 LOOP DECLARE x ; BEGIN LOOP dbms_output.put_line(x); x :; THEN exit; END IF; END LO ...

  8. Docker Toolbox 学习教程【转载】

    最近在研究虚拟化,容器和大数据,所以从Docker入手,下面介绍一下在Windows下怎么玩转Docker.Docker本身在Windows下有两个软件,一个就是Docker,另一个是Docker T ...

  9. php array_fill()函数 语法

    php array_fill()函数 语法 作用:用键值填充数组.大理石平台价格 语法:array_fill(index,number,value) 参数: 参数 描述 index 必需.被返回数组的 ...

  10. Centos7卸载FastDFS6.1卸载(六)

    今天由于安装了高版本的fastdfs,与nginx不兼容,因此要卸载掉,重新安装. 转载:http://www.leftso.com/blog/244.html ) 停止服务 [root@bogon ...