Streaming简介

link:http://www.cnblogs.com/luchen927/archive/2012/01/16/2323448.html

Streaming框架允许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植。因此可以说对于hadoop的扩展性意义重大,今天简单说一下。

Streaming的原理是用Java实现一个包装用户程序的MapReduce程序,该程序负责调用MapReduce Java接口获取key/value对输入,创建一个新的进程启动包装的用户程序,将数据通过管道传递给包装的用户程序处理,然后调用MapReduce Java接口将用户程序的输出切分成key/value对输出。

Streaming优点

1 开发效率高,便于移植

只要按照标准输入输出格式进行编程,就可以满足hadoop要求。因此单机程序稍加改动就可以在集群上进行使用。 同样便于测试

只要按照 cat input | mapper | sort | reducer > output 进行单机测试即可。

如果单机测试通过,大多数情况是可以在集群上成功运行的,只要控制好内存就好了。

2 提高程序效率

有些程序对内存要求较高,如果用java控制内存毕竟不如C/C++。

Streaming不足

1 Hadoop Streaming默认只能处理文本数据,无法直接对二进制数据进行处理

2 Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出

具体参数介绍

-input    <path>

输入数据路径

-output   <path>

输出数据路径

-mapper  <cmd|JavaClassName>

mapper可执行程序或Java类

-reducer  <cmd|JavaClassName>

reducer可执行程序或Java类

-file            <file>        Optional

分发本地文件

-cacheFile       <file>        Optional

分发HDFS文件

-cacheArchive   <file>         Optional

分发HDFS压缩文件

-numReduceTasks  <num>     Optional

reduce任务个数

-jobconf | -D NAME=VALUE    Optional

作业配置参数

-combiner <JavaClassName>    Optional

Combiner Java类

-partitioner <JavaClassName>   Optional

Partitioner Java类

-inputformat <JavaClassName>  Optional

InputFormat Java类

-outputformat <JavaClassName> Optional

OutputFormat Java类

-inputreader <spec>            Optional

InputReader配置

-cmdenv   <n>=<v>           Optional

传给mapper和reducer的环境变量

-mapdebug <path>             Optional

mapper失败时运行的debug程序

-reducedebug <path>           Optional

reducer失败时运行的debug程序

-verbose                      Optional

详细输出模式

下面是对各个参数的详细说明:

l -input <path>:指定作业输入,path可以是文件或者目录,可以使用*通配符,-input选项可以使用多次指定多个文件或目录作为输入。

l -output <path>:指定作业输出目录,path必须不存在,而且执行作业的用户必须有创建该目录的权限,-output只能使用一次。

l -mapper:指定mapper可执行程序或Java类,必须指定且唯一。

l -reducer:指定reducer可执行程序或Java类,必须指定且唯一。

l -file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件。

l -numReduceTasks:指定reducer的个数,如果设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接作为整个作业的输出。

-jobconf | -D NAME=VALUE:指定作业参数,NAME是参数名,VALUE是参数值,可以指定的参数参考hadoop-default.xml。特别建议用-jobconf mapred.job.name='My Job Name'设置作业名,使用-jobconf mapred.job.priority=VERY_HIGH | HIGH | NORMAL | LOW | VERY_LOW设置作业优先级,使用-jobconf mapred.job.map.capacity=M设置同时最多运行M个map任务,使用-jobconf mapred.job.reduce.capacity=N设置同时最多运行N个reduce任务。

常见的作业配置参数如下表所示:

mapred.job.name

作业名

mapred.job.priority

作业优先级

mapred.job.map.capacity

最多同时运行map任务数

mapred.job.reduce.capacity

最多同时运行reduce任务数

hadoop.job.ugi

作业执行权限

mapred.map.tasks

map任务个数

mapred.reduce.tasks

reduce任务个数

mapred.job.groups

作业可运行的计算节点分组

mapred.task.timeout

任务没有响应(输入输出)的最大时间

mapred.compress.map.output

map的输出是否压缩

mapred.map.output.compression.codec

map的输出压缩方式

mapred.output.compress

reduce的输出是否压缩

mapred.output.compression.codec

reduce的输出压缩方式

stream.map.output.field.separator

map输出分隔符

l -combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。

l -partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitonerIntHashPartitioner

l -inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。如果不指定,默认使用TextInputFormat和TextOutputFormat。

l -cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。

l -mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。

l -verbose:指定输出详细信息,例如分发哪些文件,实际作业配置参数值等,可以用于调试。

Hadoop Streaming框架使用(一)的更多相关文章

  1. Hadoop Streaming框架学习2

    Hadoop Streaming框架学习(二) 1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop ...

  2. Hadoop Streaming框架学习(一)

    Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Had ...

  3. Hadoop Streaming框架使用(二)

    上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...

  4. Hadoop Streaming框架学习(二)

    1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop/hadoop streaming args 其 ...

  5. Hadoop Streaming详解

    一: Hadoop Streaming详解 1.Streaming的作用 Hadoop Streaming框架,最大的好处是,让任何语言编写的map, reduce程序能够在hadoop集群上运行:m ...

  6. hadoop streaming怎么设置key

    充分利用hadoop的map输出自动排序功能,能够有效提高计算效率.Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'/t’之前的部分作为key,其余内容作为valu ...

  7. hadoop streaming 文档

    Hadoop Streaming框架使用(一) Streaming简介 Streaming框架允许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植.因 ...

  8. hadoop streaming字段排序介绍

    我们在使用hadoop streaming的时候默认streaming的map和reduce的separator不指定的话,map和reduce会根据它们默认的分隔符来进行排序 map.reduce: ...

  9. 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试

    相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控 用python + hadoop streami ...

随机推荐

  1. PHP魔术方法在框架中的应用

    class usermodel{ protected $email='user@163.com'; protected $data=array(); public function __set($k, ...

  2. mysql中select五种子句和统计函数

    select 五种子句顺序 where 条件 group by 分组 having 把结果进行再次筛选 order by  排序 limit  取出条目 统计函数  max(列名)  求最大 min( ...

  3. PHP常用函数大全。

    php usleep() 函数延迟代码执行若干微秒. unpack() 函数从二进制字符串对数据进行解包. uniqid() 函数基于以微秒计的当前时间,生成一个唯一的 ID. time_sleep_ ...

  4. 清空mysql的历史记录

    # vi ~/.mysql_history show tables; show databases; 清空里面的内容,并不用退出当前shell,就可以清除历史命令!!

  5. OCJP(1Z0-851) 模拟题分析(八)over

    Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...

  6. Unreal Engine4 学习笔记1 状态机 动画蓝图

    1.动画蓝图 包含 状态机 包含 混合空间BlendSpace,即状态机包含在动画蓝图的"动画图表中",而混合空间可用于在状态机中向某(没)一个状态输出最终POSE:    动画蓝 ...

  7. annotation-config 和 component-scan 的区别

    <context:annotation-config> 和 <context:component-scan>是Spring Core里面的两个基础概念,每个使用者都有必要理解怎 ...

  8. outlook备份及恢复

    outlook备份及恢复 Reference: http://wenku.baidu.com/link?url=2gtDkCSDoPdnfx3Ungd6on9wdhUTWgbO_vmmKLv1i4df ...

  9. 把浏览器的私有模式添加到VS中

    题记:在用VS进行Web开发的时候,常常希望VS的调试不会对浏览器造成固定的影响,那么使用浏览器的私有模式来启动就很有必要. 前几天SCOTT HANSELMAN分享了一个开发Web应用程序的小技巧, ...

  10. HR外包系统 - 薪资项目分类

    序号    薪资项目编码规则    6到9开头1    普通工资项目加项    7开头三位,7XX,不够时,从71XX开始2    普通工资项目减项    8开头三位,8XX,不够时,从81XX开始3 ...