Hadoop Streaming框架使用(一)
Streaming简介
link:http://www.cnblogs.com/luchen927/archive/2012/01/16/2323448.html
Streaming框架允许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植。因此可以说对于hadoop的扩展性意义重大,今天简单说一下。
Streaming的原理是用Java实现一个包装用户程序的MapReduce程序,该程序负责调用MapReduce Java接口获取key/value对输入,创建一个新的进程启动包装的用户程序,将数据通过管道传递给包装的用户程序处理,然后调用MapReduce Java接口将用户程序的输出切分成key/value对输出。
Streaming优点
1 开发效率高,便于移植
只要按照标准输入输出格式进行编程,就可以满足hadoop要求。因此单机程序稍加改动就可以在集群上进行使用。 同样便于测试
只要按照 cat input | mapper | sort | reducer > output 进行单机测试即可。
如果单机测试通过,大多数情况是可以在集群上成功运行的,只要控制好内存就好了。
2 提高程序效率
有些程序对内存要求较高,如果用java控制内存毕竟不如C/C++。
Streaming不足
1 Hadoop Streaming默认只能处理文本数据,无法直接对二进制数据进行处理
2 Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出
具体参数介绍
|
-input <path> |
输入数据路径 |
|
-output <path> |
输出数据路径 |
|
-mapper <cmd|JavaClassName> |
mapper可执行程序或Java类 |
|
-reducer <cmd|JavaClassName> |
reducer可执行程序或Java类 |
|
-file <file> Optional |
分发本地文件 |
|
-cacheFile <file> Optional |
分发HDFS文件 |
|
-cacheArchive <file> Optional |
分发HDFS压缩文件 |
|
-numReduceTasks <num> Optional |
reduce任务个数 |
|
-jobconf | -D NAME=VALUE Optional |
作业配置参数 |
|
-combiner <JavaClassName> Optional |
Combiner Java类 |
|
-partitioner <JavaClassName> Optional |
Partitioner Java类 |
|
-inputformat <JavaClassName> Optional |
InputFormat Java类 |
|
-outputformat <JavaClassName> Optional |
OutputFormat Java类 |
|
-inputreader <spec> Optional |
InputReader配置 |
|
-cmdenv <n>=<v> Optional |
传给mapper和reducer的环境变量 |
|
-mapdebug <path> Optional |
mapper失败时运行的debug程序 |
|
-reducedebug <path> Optional |
reducer失败时运行的debug程序 |
|
-verbose Optional |
详细输出模式 |
下面是对各个参数的详细说明:
l -input <path>:指定作业输入,path可以是文件或者目录,可以使用*通配符,-input选项可以使用多次指定多个文件或目录作为输入。
l -output <path>:指定作业输出目录,path必须不存在,而且执行作业的用户必须有创建该目录的权限,-output只能使用一次。
l -mapper:指定mapper可执行程序或Java类,必须指定且唯一。
l -reducer:指定reducer可执行程序或Java类,必须指定且唯一。
l -file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件。
l -numReduceTasks:指定reducer的个数,如果设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接作为整个作业的输出。
-jobconf | -D NAME=VALUE:指定作业参数,NAME是参数名,VALUE是参数值,可以指定的参数参考hadoop-default.xml。特别建议用-jobconf mapred.job.name='My Job Name'设置作业名,使用-jobconf mapred.job.priority=VERY_HIGH | HIGH | NORMAL | LOW | VERY_LOW设置作业优先级,使用-jobconf mapred.job.map.capacity=M设置同时最多运行M个map任务,使用-jobconf mapred.job.reduce.capacity=N设置同时最多运行N个reduce任务。
常见的作业配置参数如下表所示:
|
mapred.job.name |
作业名 |
|
mapred.job.priority |
作业优先级 |
|
mapred.job.map.capacity |
最多同时运行map任务数 |
|
mapred.job.reduce.capacity |
最多同时运行reduce任务数 |
|
hadoop.job.ugi |
作业执行权限 |
|
mapred.map.tasks |
map任务个数 |
|
mapred.reduce.tasks |
reduce任务个数 |
|
mapred.job.groups |
作业可运行的计算节点分组 |
|
mapred.task.timeout |
任务没有响应(输入输出)的最大时间 |
|
mapred.compress.map.output |
map的输出是否压缩 |
|
mapred.map.output.compression.codec |
map的输出压缩方式 |
|
mapred.output.compress |
reduce的输出是否压缩 |
|
mapred.output.compression.codec |
reduce的输出压缩方式 |
|
stream.map.output.field.separator |
map输出分隔符 |
l -combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。
l -partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitoner和IntHashPartitioner。
l -inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。如果不指定,默认使用TextInputFormat和TextOutputFormat。
l -cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。
l -mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。
l -verbose:指定输出详细信息,例如分发哪些文件,实际作业配置参数值等,可以用于调试。
Hadoop Streaming框架使用(一)的更多相关文章
- Hadoop Streaming框架学习2
Hadoop Streaming框架学习(二) 1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop ...
- Hadoop Streaming框架学习(一)
Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Had ...
- Hadoop Streaming框架使用(二)
上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...
- Hadoop Streaming框架学习(二)
1.常用Streaming命令介绍 使用下面的命令运行Streaming MapReduce程序: 1: $HADOOP_HOME/bin/hadoop/hadoop streaming args 其 ...
- Hadoop Streaming详解
一: Hadoop Streaming详解 1.Streaming的作用 Hadoop Streaming框架,最大的好处是,让任何语言编写的map, reduce程序能够在hadoop集群上运行:m ...
- hadoop streaming怎么设置key
充分利用hadoop的map输出自动排序功能,能够有效提高计算效率.Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'/t’之前的部分作为key,其余内容作为valu ...
- hadoop streaming 文档
Hadoop Streaming框架使用(一) Streaming简介 Streaming框架允许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植.因 ...
- hadoop streaming字段排序介绍
我们在使用hadoop streaming的时候默认streaming的map和reduce的separator不指定的话,map和reduce会根据它们默认的分隔符来进行排序 map.reduce: ...
- 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试
相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控 用python + hadoop streami ...
随机推荐
- PHP魔术方法在框架中的应用
class usermodel{ protected $email='user@163.com'; protected $data=array(); public function __set($k, ...
- mysql中select五种子句和统计函数
select 五种子句顺序 where 条件 group by 分组 having 把结果进行再次筛选 order by 排序 limit 取出条目 统计函数 max(列名) 求最大 min( ...
- PHP常用函数大全。
php usleep() 函数延迟代码执行若干微秒. unpack() 函数从二进制字符串对数据进行解包. uniqid() 函数基于以微秒计的当前时间,生成一个唯一的 ID. time_sleep_ ...
- 清空mysql的历史记录
# vi ~/.mysql_history show tables; show databases; 清空里面的内容,并不用退出当前shell,就可以清除历史命令!!
- OCJP(1Z0-851) 模拟题分析(八)over
Exam : 1Z0-851 Java Standard Edition 6 Programmer Certified Professional Exam 以下分析全都是我自己分析或者参考网上的,定有 ...
- Unreal Engine4 学习笔记1 状态机 动画蓝图
1.动画蓝图 包含 状态机 包含 混合空间BlendSpace,即状态机包含在动画蓝图的"动画图表中",而混合空间可用于在状态机中向某(没)一个状态输出最终POSE: 动画蓝 ...
- annotation-config 和 component-scan 的区别
<context:annotation-config> 和 <context:component-scan>是Spring Core里面的两个基础概念,每个使用者都有必要理解怎 ...
- outlook备份及恢复
outlook备份及恢复 Reference: http://wenku.baidu.com/link?url=2gtDkCSDoPdnfx3Ungd6on9wdhUTWgbO_vmmKLv1i4df ...
- 把浏览器的私有模式添加到VS中
题记:在用VS进行Web开发的时候,常常希望VS的调试不会对浏览器造成固定的影响,那么使用浏览器的私有模式来启动就很有必要. 前几天SCOTT HANSELMAN分享了一个开发Web应用程序的小技巧, ...
- HR外包系统 - 薪资项目分类
序号 薪资项目编码规则 6到9开头1 普通工资项目加项 7开头三位,7XX,不够时,从71XX开始2 普通工资项目减项 8开头三位,8XX,不够时,从81XX开始3 ...