题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007。

不难联想到这题和HDU2196是一种类型的树形DP,因为它们都要分别求各个点的答案。然后解法也不难想:

  • dp0[u]表示只考虑以u结点为根的子树的方案数
  • dp1[u]表示u结点往上走,倒过来,以它父亲为根那部分的方案数

有了这两部分的结果,对于各个点u的答案就是dp0[u]*(dp1[u]+1)。这两部分求法如下,画画图比较好想:

  • 首先求出dp0,这个转移是:dp0[u]=∏(dp0[v]+1)(v是u的孩子),就是对于每个孩子为根的子树的情况总数的乘积,而其中每个孩子的情况总数还要加上一个父亲到孩子之间的边不修复、孩子的子树的边全部修复的情况。
  • 然后求出dp1,转移:求dp1[v],u是v的父亲,dp1[v]=dp0[u]/dp0[v]*(dp1[u]+1)。
  • 现在问题来了,求dp0[u]/dp0[v],注意到结果模1000000007是一个质数,一开始我用乘法逆元WA了,因为虽然1000000007是质数,但1000000007的倍数不与1000000007互质,模1000000007结果是0,这样就出问题了!
  • 本来我想改用线段树做,不过队友提醒说可以分情况讨论,如果不存在与1000000007不互质的数直接逆元搞,存在两个以上不与1000000007互质的数那结果就是0,一个的话。。。。。我就不多说了。
 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 222222
struct Edge{
int v,next;
}edge[MAXN<<];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
}
long long d[][MAXN];
long long ine(long long a){
long long res=;
int n=-;
while(n){
if(n&){
res*=a;
res%=;
}
a*=a;
a%=;
n>>=;
}
return res;
}
void dp0(int u,int fa){
long long res=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
dp0(v,u);
res*=d[][v]+;
res%=;
}
d[][u]=res;
}
void dp1(int u,int fa){
int cnt=;
long long tot=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
if((d[][v]+)%==) ++cnt;
else{
tot*=d[][v]+;
tot%=;
}
}
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
if(cnt){
if((d[][v]+)%== && cnt==){
d[][v]=tot;
}else d[][v]=;
}else{
d[][v]=d[][u]*ine((d[][v]+)%);
d[][v]%=;
}
d[][v]*=d[][u]+;
d[][v]%=;
dp1(v,u);
}
}
int main(){
memset(head,-,sizeof(head));
int n,a;
scanf("%d",&n);
for(int i=; i<=n; ++i){
scanf("%d",&a);
addEdge(a,i);
addEdge(i,a);
}
dp0(,);
dp1(,);
for(int i=; i<=n; ++i){
printf("%lld ",d[][i]*(d[][i]+)%);
}
return ;
}

Codeforces 543D Road Improvement(树形DP + 乘法逆元)的更多相关文章

  1. Codeforces 543D. Road Improvement (树dp + 乘法逆元)

    题目链接:http://codeforces.com/contest/543/problem/D 给你一棵树,初始所有的边都是坏的,要你修复若干边.指定一个root,所有的点到root最多只有一个坏边 ...

  2. Codeforces 543D Road Improvement(DP)

    题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...

  3. Codeforces Round #302 (Div. 1) D - Road Improvement 树形dp

    D - Road Improvemen 思路:0没有逆元!!!! 不能直接除,要求前缀积和后缀积!!! #include<bits/stdc++.h> #define LL long lo ...

  4. Codeforces 543D Road Improvement

    http://codeforces.com/contest/543/problem/D 题意: 给定n个点的树 问: 一开始全是黑边,对于以i为根时,把树边白染色,使得任意点走到根的路径上不超过一条黑 ...

  5. codeforces 212E IT Restaurants(树形dp+背包思想)

    题目链接:http://codeforces.com/problemset/problem/212/E 题目大意:给你一个无向树,现在用两种颜色去给这颗树上的节点染色.用(a,b)表示两种颜色分别染的 ...

  6. Codeforces 123E Maze(树形DP+期望)

    [题目链接] http://codeforces.com/problemset/problem/123/E [题目大意] 给出一棵,给出从每个点出发的概率和以每个点为终点的概率,求出每次按照dfs序从 ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. codeforces 709E E. Centroids(树形dp)

    题目链接: E. Centroids time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  9. CodeForces 77C Beavermuncher-0xFF (树形dp)

    不错的树形dp.一个结点能走多次,树形的最大特点是到达后继的路径是唯一的,那个如果一个结点无法往子结点走,那么子结点就不用考虑了. 有的结点不能走完它的子结点,而有的可能走完他的子节点以后还会剩下一些 ...

随机推荐

  1. eclipse maven tomcat7 热部署

    .配置tomcat a.配置jdk b.CATALINA_HOME=c:\tomcat CATALINA_BASE=c:\tomcat .tomcat配置密码 C:\Program Files\oth ...

  2. rabbitmq_config

    https://github.com/rabbitmq/rabbitmq-server/blob/stable/docs/rabbitmq.config.example   %% ---------- ...

  3. 网页(HTML)中的特殊字符

    网页(HTML)中的特殊字符 (1)一般来说,在HTML中,一个特殊字符有两种表达方式,一种称作数字参考,一种称作实体参考. 所谓数字参考,就是用数字来表示文档中的特殊字符,通常由前缀“&#” ...

  4. Xcode常用代码块

    Xcode的代码片段(Code Snippets)创建自定义的代码片段,当你重用这些代码片段时,会给你带来很大的方便. 常用的: 1.strong:@property (nonatomic,stron ...

  5. NYOJ题目874签到

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAswAAAIzCAIAAACbd9iBAAAgAElEQVR4nO3dPXLjSNou0G8T8rUQ2V

  6. KMP算法学习

    kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置.常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(n ...

  7. 数据结构之AVL树

    AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 旋转 如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡.这种失去平衡的可以概括为4种姿态:LL ...

  8. Hadoop CDH5 集群管理

    Hadoop 是一个开源项目,所以很多公司在这个基础进行商业化,Cloudera 对 Hadoop做了相应的改变.Cloudera 公司的发行版,我们将该版本称为 CDH(Cloudera Distr ...

  9. 转:不再以讹传讹,GET和POST的真正区别

    如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历 前几天有人问我这个问题.我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用. 这个答案好像并不是他想要的.于是他继 ...

  10. sql server 对象资源管理器(一)

    当需要查看具体数据库的所有用户表.存储过程等创建修改等脚本的时候,可以借用视图中的对象资源管理器的详细信息里面获取. 具体操作如下图所示: