树形DP。。。。。
Rebuilding Roads
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 8188 Accepted: 3659

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree.

Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P

* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11 

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 

Source

USACO 2002 February

现在设dp[j]表示以i为根的子树中节点个数为j的最少删除边数

状态转移方程: dp[1] = tot                                         (tot为他的子节点个数)

dp[j] = min(dp[j],dp[k]-1+dp[s][j-k])  (1<=i<=n,2<=j<=sum(节点总和),1<=k<j,s为i子节点)(i中已有k个节点并从s中选择j-k个,算最少删除边数,s选上所以i->s的边不需删除,所以-1)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;

const int INF=0x3f3f3f3f;

int dp[200][200],sum[200],N,P;
vector<int> g[200];
bool vis[200];

void Tree_DP(int s)
{
    if(vis[s]) return;
    int tot = 0;
    vis[s]=true;sum[s]=1;
    for(int i=0;i<g[s].size();i++)
    {
        int v=g[s];
        if(vis[v]) continue;
        Tree_DP(v);
        sum[s]+=sum[v];
        tot++;
    }
    dp[s][1]=tot;
    for(int i=0;i<g[s].size();i++)
    {
        int v=g[s];
        for(int j=sum[s];j>=2;j--)
        {
            for(int k=1;k<j;k++)
            {
                if(dp[s][k]!=INF&&dp[v][j-k]!=INF)
                {
                    dp[s][j]=min(dp[s][j],dp[s][k]+dp[v][j-k]-1);
                }
            }
        }
    }
}

int main()
{
    while(scanf("%d%d",&N,&P)!=EOF)
    {
        for(int i=0;i<N+10;i++)
            g.clear();
        for(int i=0;i<N-1;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            g[a].push_back(b);
            g.push_back(a);
        }
        memset(dp,63,sizeof(dp));
        memset(vis,false,sizeof(vis));
        memset(sum,0,sizeof(sum));
        Tree_DP(1);
        int ans=INF;
        for(int i=1;i<=N;i++)
        {
            if(i==1)
                ans=min(ans,dp[P]);
            else ans=min(dp[P]+1,ans);
        }
        printf("%d\n",ans);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 1947 Rebuilding Roads的更多相关文章

  1. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  2. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  3. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  4. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  5. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  6. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  7. POJ 1947 Rebuilding Roads(树形DP)

    题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...

  8. POJ 1947 - Rebuilding Roads 树型DP(泛化背包转移)..

    dp[x][y]表示以x为根的子树要变成有y个点..最少需要减去的边树... 最终ans=max(dp[i][P]+t)  < i=(1,n) , t = i是否为整棵树的根 > 更新的时 ...

  9. DP Intro - poj 1947 Rebuilding Roads

    算法: dp[i][j]表示以i为根的子树要变成有j个节点的状态需要减掉的边数. 考虑状态转移的时候不考虑i的父亲节点,就当不存在.最后统计最少减去边数的 时候+1. 考虑一个节点时,有两种选择,要么 ...

随机推荐

  1. 遵循PSR-4的自动加载

    一.简介 首先这里要了解PSR,Proposing a Standards Recommendation(提出标准建议)的缩写,就是一种PHP开发规范,让我们研发出来的代码更合理.更好维护.可读性更高 ...

  2. Aspx生命周期

    今天去面试,碰到面试官问这个问题.aspx页面生命周期是什么?顿时懵逼 还跟我解释:就是页面怎么解析的aspx页面.果断没看过这方面知识,没答上来.现在记录一下 ASP.NET页面生命周期 ASP.N ...

  3. AngularJs Angular数据类型判断

    angular.isArray 判断括号内的值是否为数组. 格式:angular.isArray(value); value: 被判断是否为数组的值. ------------------------ ...

  4. AngularJs angular.equals

    angular.equals 对比两个对象/值是否相等.支持值类型.正则表达式.数组和对象. 如果下列至少有一个是正确的,则将两个对象/值视为相等. 两个对象/值能通过===比较. 两个对象/值是同一 ...

  5. ThreadPoolExecutor机制

    一.概述 1.ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线程调度,线程池管理等等服务: 2.Execu ...

  6. TeamViewer12.0.71503(远程控制软件)精简版单文件企业版介绍

    TeamViewer 是一款能在任何防火墙和 NAT 代理的后台用于远程控制,桌面共享和文件传输的简单且快速的解决方案.为了连接到另一台计算机,只需要在两台计算机上同时运行 TeamViewer 即可 ...

  7. scrapy1_官网教程

    https://scrapy-chs.readthedocs.io/zh_CN/0.24/intro/tutorial.html 本篇文章主要介绍如何使用编程的方式运行Scrapy爬虫. 在开始本文之 ...

  8. 自然语言9_NLTK计算中文高频词

    以下代码仅限于python2 NLTK计算中文高频词 >>> sinica_fd=nltk.FreqDist(sinica_treebank.words()) >>> ...

  9. springmvc @responseBody自动打包json出现错误(外键查询死循环)问题

    在外键字段的get方法上加入@JsonIgnore

  10. Robot Framework--12 RFS+AutoItLibrary测试web对话框

    转自:http://blog.csdn.net/tulituqi/article/details/21871247 Selenium2library在我们实际测试web页面的时候基本上已经够用了,不过 ...