[转]二重积分换元法的一种简单证明 (ps:里面的符号有点小错误,理解就好。。。
---恢复内容开始---
10.3二重积分的换元积分法
在一元函数定积分的计算中,我们常常进行换元,以达删繁就简的目的,当然,二重积分也有换元积分的问题。
首先让我们回顾一下前面曾讨论的一个事实。
设换元函数
,视其为一个由定义域
到
的映射.点
的象点为
,点x的象点为
,记
,
则由
到点
的线段长为
,
到
的线段长为
,称
为映射
在点
到点
的平均伸缩率。若
在点
处可导,则

=

即
称
是映射
在点
处的伸缩率。
对于由平面区域
到
的映射
我们有如下结论:
引理 若变换
在开区域
存在连续偏导数,且雅可比行列式
,
。变换将
平面上开区域变为
平面上开区域
。
,其象点为


,则包含点
的面积微元
及与之相对应的包含点
的面积微元
之比是
,即
=

下面给出引理3.1的说明,严格的证明从略。由图3。1所示,在
内作以点
为顶点的矩形
,而变换
,将
分别变为
平面上的四点
,矩形
变为曲边四边形
。而曲边四边形
的四个顶点的坐标由泰勒公式表示为
:
:




:
+

+
:



忽略高阶无穷小
与
,曲边四边形
近似平行四边形,其面积
=
=
=
其中
是矩形
的面积。于是

在引理条件下,函数组
,在
的某邻域
具有连续的反函数组

再根据9.1节性质1.2有
=
于是
=
=

定理3.1 若函数
在有界闭区域
连续,函数组将
平面上区域
一一对应地变换为
平面上区域
,且该函数组在
存在连续的偏导数,,则
=


证 用任意分法
将区域
分成
个小区域
,其面积分别记为
;变换
,将分法
变为
上的分法
,
将
分割成
个小区域
,其面积分别记为
,由引理可知,对于
,有



于是
,在
上对应唯一点
且


,于是





在定理3.2的条件下,变换
在有界闭区域
上存在连续的反函数组
,他们必在
上一致连续,所以当
时,必有又注意到函数
在
的连续性,因而他在
上可积,于是在
中令
,有
=

完成定理3。2的证明。
在二重积分的计算中,若被积函数为
的形式,或积分区域为所谓的圆形区域时,通常采用极坐标变换
它能使前者化简为一元函数
。

后者若为图3.2所示的区域,利用极坐标变换能化为
平面上的
型区域。则积分
=

=


=
特别,极点在边界上的扇形区域,即
,则积分
=
极点在区域
的内部,边界线是
的区域,即
则积分
=



例3.1 计算
解 作极坐标变换
将圆域D变换为矩形区域,
,于是用公式(3.5)得
=

例3.2 计算
,D是由
和
所围的区域。
解 积分区域如图3.5所示,作极坐标变换,则D化为区域
,其边界曲线为
=
,
,于是得
=
=
例3.3
其中D是由
所围成的平面区域

解 区域D及
如图3.6所示,有
=
-
而
=4
在极坐标系下,有
, 因此
=
于是
=4-
.
例3.4 计算
,其中D是由曲线
所围成的有界区域.
解由于积分区域D可表示为
故替换
,则积分区域变为
,在极坐标下

于是

例3.5 计算
解 由对称性,原积分


其中
。作广义极坐标变换:
则
变换为矩形区域
(图3.7)
且

于是



例3.6 求曲线
与
所围成区域
的面积

解由二重积分的性质可知,区域的面积

作变换:
,
则这个变换
平面上曲线
变为
平面
上的曲线
、
变为
,于是它将区域
变为
平面上由
和
所未成的区域
(图3.8 )。且

于是

例3.7 计算
解 作变换:
则
,将
变换为闭圆域
,且

故
由对称性

于是

例3.8 计算
,
是由
、
、
和
所围成的区域。
解 作变换:
,
,则这个变换将
变换为
平面上的正方形区域(图3.9)。由于

且

故 
又注意到
,于是


---恢复内容结束---
[转]二重积分换元法的一种简单证明 (ps:里面的符号有点小错误,理解就好。。。的更多相关文章
- Android一键换肤功能:一种简单的实现
Android一键换肤功能:一种简单的实现 现在的APP开发,通常会提供APP的换肤功能,网上流传的换肤代码和实现手段过于复杂,这里有一个开源实现,我找了一大堆,发现这个项目相对较为简洁:htt ...
- 【腾讯云的1001种玩法】几种在腾讯云建立WordPress的方法(Linux)(二)
版权声明:本文由张宁原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/126547001488207964 来源:腾云阁 ht ...
- cf219d 基础换根法
/*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...
- poj3585树最大流——换根法
题目:http://poj.org/problem?id=3585 二次扫描与换根法,一次dfs求出以某个节点为根的相关值,再dfs遍历一遍树,根据之前的值换根取最大值为答案. 代码如下: #incl ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- poj 3585 Accumulation Degree(二次扫描和换根法)
Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...
- Python 自定义元类的两种写法
有关元类是什么大家自己搜索了解,我这里写一下实现元类的两种写法 # 自定义元类 #继承type class LowercaseMeta(type): ''' 修改类的属性名称为小写的元类 ''' # ...
- 几种简单的负载均衡算法及其Java代码实现
什么是负载均衡 负载均衡,英文名称为Load Balance,指由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助.通过某种负载分担技 ...
- GIT将本地项目上传到Github(两种简单、方便的方法)
GIT将本地项目上传到Github(两种简单.方便的方法) 一.第一种方法: 首先你需要一个github账号,所有还没有的话先去注册吧! https://github.com/ 我们使用git需要先安 ...
随机推荐
- jQuery幸运大转盘_jQuery+PHP抽奖程序的简单实现
jQuery幸运大转盘_jQuery+PHP抽奖程序的简单实现 在线实例 查看演示 完整代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...
- CodePen 作品秀:Canvas 粒子效果文本动画
作品名称——Shape Shifter,基于 Canvas 的粒子图形变换实验.在页面下方的输入框输入文本,上面就会进行变换出对应的粒子效果文本动画. CodePen 作品秀系列向大家展示来自 Cod ...
- Hybrid框架UI重构之路:四、分而治之
上文回顾:Hybird框架UI重构之路:三.工欲善其事,必先利其器 上一篇文章有说到less.grunt这两个工具,是为了css.js分模块使用的.UI框架提供给使用者的时候,是一个大的xxx.js. ...
- 电商CRM的痛点在哪里?
观电商风云,风起云涌,如何寻找新客户及维护老客户,抢占市场,此时迫在眉睫.在大家所认为的CRM就是发发短信,发发邮件等形式去推送活动信息,但在三疯看来,做CRM的关键词是“互动”,而不是简单的促销. ...
- iOS常用手势识别器
手势识别状态: typedef NS_ENUM(NSInteger, UIGestureRecognizerState) { // 没有触摸事件发生,所有手势识别的默认状态 UIGestureReco ...
- android SharedPreferences 轻量级存储!
首先在当前进程也就是当前的项目里面进行存储 SharedPreferences.Editor editor = mContext.getSharedPreferences("tvplay&q ...
- Java核心:类加载和JVM内存的分配
类的加载: 指的是将class文件的二进制数据读入到运行时数据区(JVM在内存中划分的) 中,并在方法区内创建一个class对象. 类加载器: 负责加载编译后的class文件(字节码文件)到JVM(J ...
- 怎么查看Mac电脑的开机记录?
可以使用last命令查看Mac电脑来看开机记录,同时也能查看关机记录. 首先打开mac的命令终端: 命令行终端敲入命令:last | grep reboot (查看开机时间记录) 命令行终端敲入命令: ...
- 【代码笔记】iOS-判断textField里面是否有空
一,效果图. 二,工程图. 三,代码. ViewController.m - (void)viewDidLoad { [super viewDidLoad]; // Do any additional ...
- OC NSString(字符串)
OC NSString(字符串) 多行文字字面量 NSString * string = @"abC" @"DEF" @"hjk" @&qu ...