CF687C. The Values You Can Make[背包DP]
2 seconds
256 megabytes
standard input
standard output
Pari wants to buy an expensive chocolate from Arya. She has n coins, the value of the i-th coin is ci. The price of the chocolate is k, so Pari will take a subset of her coins with sum equal to k and give it to Arya.
Looking at her coins, a question came to her mind: after giving the coins to Arya, what values does Arya can make with them? She is jealous and she doesn't want Arya to make a lot of values. So she wants to know all the values x, such that Arya will be able to make xusing some subset of coins with the sum k.
Formally, Pari wants to know the values x such that there exists a subset of coins with the sum k such that some subset of this subset has the sum x, i.e. there is exists some way to pay for the chocolate, such that Arya will be able to make the sum x using these coins.
The first line contains two integers n and k (1 ≤ n, k ≤ 500) — the number of coins and the price of the chocolate, respectively.
Next line will contain n integers c1, c2, ..., cn (1 ≤ ci ≤ 500) — the values of Pari's coins.
It's guaranteed that one can make value k using these coins.
First line of the output must contain a single integer q— the number of suitable values x. Then print q integers in ascending order — the values that Arya can make for some subset of coins of Pari that pays for the chocolate.
6 18
5 6 1 10 12 2
16
0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18
3 50
25 25 50
3
0 25 50
很水........
Let dpi, j, k be true if and only if there exists a subset of the first i coins with sum j, that has a subset with sum k. There are 3 cases to handle:
- The i-th coin is not used in the subsets.
- The i-th coin is used in the subset to make j, but it's not used in the subset of this subset.
- The i-th coin is used in both subsets.
So dpi, j, k is equal to dpi - 1, j, k OR dpi - 1, j - ci, k OR dpi - 1, j - ci, k - ci.
f[i][j][k]表示前i个coin能否凑成j价值再从凑成j价值的里面凑出k价值
f[0][0][0]=1
第一维可以滚掉
//
// main.cpp
// cf687c
//
// Created by Candy on 9/20/16.
// Copyright © 2016 Candy. All rights reserved.
// #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,v,c[N],cnt=;
int f[N][N];
void dp(){
f[][]=;
for(int i=;i<=n;i++){
for(int j=v;j>=;j--)
for(int k=v;k>=;k--)
if(j-c[i]>=){
f[j][k]|=f[j-c[i]][k];
if(k-c[i]>=) f[j][k]|=f[j-c[i]][k-c[i]];
}
}
}
int main(int argc, const char * argv[]) {
n=read();v=read();
for(int i=;i<=n;i++) c[i]=read();
dp();
for(int i=;i<=v;i++) if(f[v][i]) cnt++;
printf("%d\n",cnt);
for(int i=;i<=v;i++) if(f[v][i]) printf("%d ",i);
return ;
}
CF687C. The Values You Can Make[背包DP]的更多相关文章
- poj 2184 01背包变形【背包dp】
POJ 2184 Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14657 Accepte ...
- 背包dp整理
01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...
- hdu 5534 Partial Tree 背包DP
Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...
- HDU 5501 The Highest Mark 背包dp
The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
- Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp
B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...
- noj [1479] How many (01背包||DP||DFS)
http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- G - Surf Gym - 100819S -逆向背包DP
G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...
随机推荐
- go语言 安装版 Windows7安装截图
这个比较简单的 一路next. 查看:解压版安装go. //http://www.cnblogs.com/osfipin/
- java--POI解析excel兼容性问题
近日,使用POI解析excel,发现2003版本的excel解析与2007版本的excel解析存在问题.特此总结: 1.所需jar包 : 2.java类代码(读取excel文件): public vo ...
- Sql Server Always On主库与附库遇到的问题
使用Always On的时候永远要记住只有一个主数据库可写,如果写的话要不在监听节点上做写的操作,要不只在主数据库上写的操作不然只读库无法读写
- Dotfuscator混淆加密
混淆加密 1. 需要安装Dotfuscator软件 2. 安装好后打开软件,找到编译好的DLL文件 3. 打开[setting]设置属性,如下图: 把 Disable String Encryptio ...
- Emacs学习心得之 基础操作
作者:枫雪庭 出处:http://www.cnblogs.com/FengXueTing-px/ 欢迎转载 Emacs学习心得之 基础操作 1.前言与学习计划2.Emacs基础操作 一. 前言与学习计 ...
- Android无线调试
方法一: 1. 使用USB数据线连接设备. 2. 命令输入adb tcpip 5555 ( 5555为端口号,可以自由指定). 3. 断开 USB数据,此时可以连接你需要连接的|USB设备. 4. 再 ...
- JavaScript学习03 JS函数
JavaScript学习03 JS函数 函数就是包裹在花括号中的代码块,前面使用了关键词function: function functionName() { 这里是要执行的代码 } 函数参数 函数的 ...
- redis如何执行redis命令
Redis 命令 Redis 命令用于在 redis 服务上执行操作.所以我们必须要启动Redis服务程序,也就是redis安装目录下的redis-server.exe,你可以双击执行,也可以打开cm ...
- spring + spring mvc + mybatis + react + reflux + webpack Web工程例子
前言 最近写了个Java Web工程demo,使用maven构建: 后端使用spring + spring mvc + mybatis: 前端使用react + react-router+ webpa ...
- Git从零开始怎么学?
最近,公司项目代码版本库管理,全部从svn 迁移到Git 最近了解了一段时间 近期会把整个Git使用过程陆续分享 如何从零开始使用Git