POJ1849Two[DP|树的直径](扩展HDU4003待办)
|
Two
Description The city consists of intersections and streets that connect them.
Heavy snow covered the city so the mayor Milan gave to the winter-service a list of streets that have to be cleaned of snow. These streets are chosen such that the number of streets is as small as possible but still every two intersections to be connected i.e. between every two intersections there will be exactly one path. The winter service consists of two snow plovers and two drivers, Mirko and Slavko, and their starting position is on one of the intersections. The snow plover burns one liter of fuel per meter (even if it is driving through a street that has already been cleared of snow) and it has to clean all streets from the list in such order so the total fuel spent is minimal. When all the streets are cleared of snow, the snow plovers are parked on the last intersection they visited. Mirko and Slavko don’t have to finish their plowing on the same intersection. Write a program that calculates the total amount of fuel that the snow plovers will spend. Input The first line of the input contains two integers: N and S, 1 <= N <= 100000, 1 <= S <= N. N is the total number of intersections; S is ordinal number of the snow plovers starting intersection. Intersections are marked with numbers 1...N.
Each of the next N-1 lines contains three integers: A, B and C, meaning that intersections A and B are directly connected by a street and that street's length is C meters, 1 <= C <= 1000. Output Write to the output the minimal amount of fuel needed to clean all streets.
Sample Input 5 2 Sample Output 6 Source |
DP也可以,f[i]和g[i]分别处理两个人子树i进去回来和只进不回,f[i]=sum{w of i's son}*2,g[i]两种情况,两人进入i的同一个或不同一个孩子,好麻烦啊
其实答案就是sum{w}*2-w直径,无论从哪里开始都可以
证明:
虽然s是起点(很多人的起点就忽略了这个),
s在直径上好说,
假设s不再直径上,我们选择直径某点为root,从s到root到话费也是w*2,和从root开始一个到s又回来是一样的,然后就和上面一样了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1e5+;
int n,s,u,v,w,sum=,mx=;
struct edge{
int v,ne,w;
}e[N*];
int h[N],cnt=;
inline void ins(int u,int v,int w){
cnt++;
e[cnt].ne=h[u];e[cnt].v=v;e[cnt].w=w;h[u]=cnt;
cnt++;
e[cnt].ne=h[v];e[cnt].v=u;e[cnt].w=w;h[v]=cnt;
}
int f[N][];
int dp(int u,int fa){
int &t0=f[u][],&t1=f[u][];
if(t0!=-) return t0;
t0=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(v==fa) continue;
int d=dp(v,u)+e[i].w;
if(d>t0) t1=t0,t0=d;
else if(d>t1) t1=d;
}
return t0;
}
int main(int argc, const char * argv[]) {
scanf("%d%d",&n,&s);
for(int i=;i<=n-;i++){
scanf("%d%d%d",&u,&v,&w);
ins(u,v,w);sum+=w*;
}
memset(f,-,sizeof(f));
dp(,-);
for(int i=;i<=n;i++)
mx=max(mx,f[i][]+f[i][]);
cout<<sum-mx;
//printf("\n\n%d %d",sum,mx);
return ;
}
扩展:2-->k
HDU4003(HDU最近挂了)
和选课很像了,这里特殊之处是d[i][0]的含义是一个下去又上来,其他的下去不上来
以后做做吧
POJ1849Two[DP|树的直径](扩展HDU4003待办)的更多相关文章
- VIJOS1476旅游规划[树形DP 树的直径]
描述 W市的交通规划出现了重大问题,市政府下决心在全市的各大交通路口安排交通疏导员来疏导密集的车流.但由于人员不足,W市市长决定只在最需要安排人员的路口安放人员.具体说来,W市的交通网络十分简单,它包 ...
- HDU 2196.Computer 树形dp 树的直径
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- hdu 4607 树形dp 树的直径
题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n)个点,至少需要走多少距离(每条边的距离是1): 思路:树形dp求树的直径r: a:若k<=r+1 ...
- computer(树形dp || 树的直径)
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu-2169 Computer(树形dp+树的直径)
题目链接: Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 「校内训练 2019-04-23」越野赛车问题 动态dp+树的直径
题目传送门 http://192.168.21.187/problem/1236 http://47.100.137.146/problem/1236 题解 题目中要求的显然是那个状态下的直径嘛. 所 ...
- POJ 3162.Walking Race 树形dp 树的直径
Walking Race Time Limit: 10000MS Memory Limit: 131072K Total Submissions: 4123 Accepted: 1029 Ca ...
- Computer(HDU2196+树形dp+树的直径)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2196 题目: 题意:有n台电脑,每台电脑连接其他电脑,第i行(包括第一行的n)连接u,长度为w,问你每 ...
随机推荐
- React Native 常见问题集合
在使用React Native时候,我记录下比较常遇到的问题,分为以下几类: 1. 调试问题 2. 写法问题 3. 疑难问题 4. 奇怪问题 调试问题 1. 在react-native run-and ...
- python任务执行之线程,进程,与协程
一.线程 线程为程序中执行任务的最小单元,由Threading模块提供了相关操作,线程适合于IO操作密集的情况下使用 #!/usr/bin/env python # -*- coding:utf-8 ...
- JEPF 3.1.2 发布,我们的软件机床(软件快速开发平台)
JEPF新一代软件快速开发平台(Java Elephant Platform)是一款优秀的平台产品,它本着灵活.快捷开发.高性能.高协作性.高稳定性.高可用性.人性化的操作体验为设计宗旨历经2年研发成 ...
- Xcode中XVim的常用操作
- laravel的一些坑
1.laravel 本身的性能不行,对高性能服务器,需要使用lumen 2. {{$url}} 默认会执行 htmlentities ,进行转意义,如果不需要转义可直接使用 php的echo 或者 { ...
- 操作系统开发系列—12.a.从Loader到内核 ●
Loader要做两项工作,我们先来做第一项,把内核加载到内存: 1.加载内核到内存. 2.跳入保护模式. 首先编译无内核时: nasm boot.asm -o boot.bin nasm loader ...
- Android NDK之JNI陷阱
背景: 最近一个月一直在做移植库的工作,将c代码到share library移植到Android平台.这就涉及到Android NDK(native develop kit)内容.这里只想记录下JNI ...
- commandline (命令行)登录mysql
mysql登录在命令行登录的时候是通过mysql的里面的程序的录的 其登录格式有两种:(在oracle上看到的是列出这两种,不要既有全参数名又有缩写参数名.) 1.全参数名登录释例 mysql --h ...
- Objective—C基础学习总结
1. (1)面向过程:一种以事件为中心的编程思想 (2)面向对象:一种以对象为中心的编程思想 2.get和set是用来访问和修改对象里的属性值 ...
- IOS开发之待探究随录
设置导航条的问题