题目描述

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。

输入输出格式

输入格式:

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

输出格式:

只有一行为k个子矩阵分值之和最大为多少。

输入输出样例

输入样例#1:

3 2 2
1 -3
2 3
-2 3
输出样例#1:

9

m分类讨论
m=1,f[i][j]表示前i个选了j个矩阵 复杂度O(n*n*k)
m=2,f[i][j][k]表示第一行前i个第二行前j个选了k个矩阵,转移注意i==j可以上下都选
数据弱,随便一个全负的矩阵就把没初始化的卡住了
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,K,a[N][],d[N][],s[N][],ans=-INF;
void dp1(){
for(int i=;i<=n;i++)
s[i][]=s[i-][]+a[i][];
for(int j=;j<=K;j++) d[][j]=-INF;
for(int i=;i<=n;i++)
for(int j=;j<=K;j++){
d[i][j]=d[i-][j];
for(int z=;z<i;z++) d[i][j]=max(d[i][j],d[z][j-]+s[i][]-s[z][]);
}
}
int f[N][N][];
void dp2(){
for(int i=;i<=n;i++){
s[i][]=s[i-][]+a[i][]; //printf("s1 %d %d \n",i,s[i][1]);
s[i][]=s[i-][]+a[i][]; //printf("s2 %d %d \n",i,s[i][2]);
}
for(int i=;i<=max(n,m);i++) for(int j=;j<=K;j++) f[i][][j]=f[][i][j]=-INF;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=K;k++){
f[i][j][k]=max(f[i-][j][k],f[i][j-][k]);
for(int z=;z<i;z++) f[i][j][k]=max(f[i][j][k],f[z][j][k-]+s[i][]-s[z][]);
for(int z=;z<j;z++) f[i][j][k]=max(f[i][j][k],f[i][z][k-]+s[j][]-s[z][]);
if(i==j) for(int z=;z<i;z++)
f[i][j][k]=max(f[i][j][k],f[z][z][k-]+s[i][]-s[z][]+s[i][]-s[z][]);
//printf("f %d %d %d %d\n",i,j,k,f[i][j][k]);
}
}
int main(int argc, const char * argv[]) {
n=read();m=read();K=read();
for(int i=;i<=n;i++) for(int j=;j<=m;j++) a[i][j]=read();
if(m==) {dp1();printf("%d",d[n][K]);}
else {dp2();printf("%d",f[n][n][K]);}
//printf("\n\n%d",a[1][2]);
return ;
}
 

洛谷P2331 [SCOI2005] 最大子矩阵[序列DP]的更多相关文章

  1. 洛谷P2331 [SCOI2005]最大子矩阵 DP

    P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...

  2. 洛谷 P2331 [SCOI2005]最大子矩阵

    洛谷 这一题,乍一眼看上去只想到了最暴力的暴力--大概\(n^4\)吧. 仔细看看数据范围,发现\(1 \leq m \leq 2\),这就好办了,分两类讨论. 我先打了\(m=1\)的情况,拿了30 ...

  3. 洛谷P2331[SCOI2005]最大子矩阵

    题目 DP 此题可以分为两个子问题. \(m\)等于\(1\): 原题目转化为求一行数列里的\(k\)块区间的和,区间可以为空的值. 直接定义状态\(dp[i][t]\)表示前i个数分为t块的最大值. ...

  4. BZOJ1084或洛谷2331 [SCOI2005]最大子矩阵

    BZOJ原题链接 洛谷原题链接 注意该题的子矩阵可以是空矩阵,即可以不选,答案的下界为\(0\). 设\(f[i][j][k]\)表示前\(i\)行选择了\(j\)个子矩阵,选择的方式为\(k\)时的 ...

  5. bzoj1084&&洛谷2331[SCOI2005]最大子矩阵

    题解: 分类讨论 当m=1的时候,很简单的dp,这里就不再复述了 当m=2的时候,设dp[i][j][k]表示有k个子矩阵,第一列有i个,第二列有j个 然后枚举一下当前子矩阵,状态转移 代码: #in ...

  6. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  7. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  8. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  9. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

随机推荐

  1. Python的下载与安装

    linux系统由于自身的需要,自带了Python,而Windows的系统就没有自带Python.本篇Blog介绍在win8.1下,安装Pathon需要注意的问题,包括常见的0x80240017.250 ...

  2. iframe父页面获取子页面的高度

    最近做项目中用到了iframe,子页面更改父页面的高度,经过九九八十一难,找到了解决的办法. $(window).load(function() {  var h=$(document).height ...

  3. ae专题图

    点密度图.分层设色图/等级图.单值图.柱状图.饼状图的实现代码 C# private void 点密度图ToolStripMenuItem_Click(object sender, EventArgs ...

  4. AE_复制当前图层

    private void 复制ToolStripMenuItem_Click(object sender, EventArgs e) { int layercount = axMapControl2. ...

  5. SharePoint 2013 VSS 编写器

    Windows Server 包含的 VSS 是提供内置卷影复制功能的基础结构.VSS 创建的卷影副本扩展了存储管理员的磁带备份存档解决方案,提供可轻松.有效创建和还原的高保真时间点副本,从而帮助简化 ...

  6. SharePoint Online 创建门户网站系列之创建栏目

    前 言 SharePoint Online的栏目,简单描述即显示在首页上的各个模块信息,这里,我们主要介绍我们首页上的栏目,包括简介类型.新闻列表类型.图片类型: 下面,让我们开始在SharePoin ...

  7. 使用Aircrack-ng进行无线安全审计

    设置监听模式 激活网卡 ifconfig wlan0 up 结束占用网络接口的进程 airmon-ng check kill 开启监听模式 airmon-ng start wlan0 查看网卡是否成功 ...

  8. [Android]使用RecyclerView替代ListView(二)

    以下内容为原创,转载请注明: 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/4242541.html 以前写过一篇“[Android]使用Adapte ...

  9. Android Handler机制(二)---MessageQueue源码解析

    MessageQueue 1.变量 private final boolean mQuitAllowed;//表示MessageQueue是否允许退出 @SuppressWarnings(" ...

  10. Android之SeekBar定制

    1.SeekBar样式定制 xml文件中:  <SeekBar             android:id="@+id/seekbar_voice"             ...