题目:

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

For example,

    1
/ \
2 3

The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.

Return the sum = 12 + 13 = 25.

代码:

作为第一个做的Medium级别的题目,还是有点困难的。

关键两步都参考了百度:1. 递归的方式创建一颗二叉树(用来测试);2. 递归的方式深度优先遍历二叉树并求和。

1. 递归的方式创建一颗二叉树(用来测试):

递归方法简历二叉树,就不多说了,有兴趣去调试一下,一目了然。

public TreeNode(int[] array){
        root=makeBinaryTreeByArray(array,1);
    }

/**
     * 采用递归的方式创建一颗二叉树
     * 传入的是二叉树的数组表示法
     * 构造后是二叉树的二叉链表表示法
     */
    public static TreeNode makeBinaryTreeByArray(int[] array,int index){
//        System.out.print("递归建树数组剩余: "+index+array.length);
        if(index<array.length){
            int value=array[index];
//            if(array[index]!=0){
                TreeNode t=new TreeNode(value);
                array[index]=0;
                t.left=makeBinaryTreeByArray(array,index*2);
                t.right=makeBinaryTreeByArray(array,index*2+1);
                return t;
//            }
        }
        return null;
    }

2. 递归的方式深度优先遍历二叉树并求和:

从root节点开始,调用sumNumbers(),首先将root的值计入变量tmpsum。

如果左子树不为空,以左子树节点为参数,递归调用sumNumbers()函数,此时第一次记录root的值*10加上该节点的值。

左子树优先处理,所以会一直调用完,相当于深度优先遍历,组合出全部左树的结果。

左子树处理之后就回去遍历右子树,每次都是先左后右。

如果右子树不为空,同样以右子树节点为参数,递归调用sumNumbers()函数,此时第一次记录root的值*10加上该节点的值。

某个节点左右子树都未空时,说明当前已经是最下层节点了,于是*10+val生成本条路径的tmpsum,之后加入变量result中。

解释了这么多,肯定还是懵逼,自己去画一个二叉树,试一试就发现,是这个样子滴!

int result;
    public int sumNumbers(TreeNode root) {
        if(root==null){
            System.out.println("empty tree");
         return 0;
         }
        result =0 ;
        sumnuber(root,0);
        System.out.print(result);
        return result;
    }    
    public int sumnuber(TreeNode root,int tmpsum) {
         if(root.left == null && root.right == null)  
         {  
             result += tmpsum * 10 + root.val;  
//             System.out.print(result+" ");
         }  
         if(root.left != null)  
         {  
             sumnuber(root.left, tmpsum * 10 + root.val);
         }  
         if(root.right != null)  
         {  
             sumnuber(root.right, tmpsum * 10 + root.val);  
         }
         return result;
    }

129. Sum Root to Leaf Numbers的更多相关文章

  1. 【LeetCode】129. Sum Root to Leaf Numbers 解题报告(Python)

    [LeetCode]129. Sum Root to Leaf Numbers 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/pr ...

  2. 【LeetCode】129. Sum Root to Leaf Numbers (2 solutions)

    Sum Root to Leaf Numbers Given a binary tree containing digits from 0-9 only, each root-to-leaf path ...

  3. LeetCode OJ 129. Sum Root to Leaf Numbers

    题目 Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a num ...

  4. 129. Sum Root to Leaf Numbers pathsum路径求和

    [抄题]: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a ...

  5. [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  6. [LC] 129. Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  7. leetcode 129. Sum Root to Leaf Numbers ----- java

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  8. leetcode@ [129] Sum Root to Leaf Numbers (DFS)

    https://leetcode.com/problems/sum-root-to-leaf-numbers/ Given a binary tree containing digits from 0 ...

  9. [LeetCode] 129. Sum Root to Leaf Numbers 解题思路

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

随机推荐

  1. 编译CDH Spark源代码

    如何编译CDH Spark源代码 经过漫长的编译过程(我编译了2个半小时),最终成功了,在assembly/target/scala-2.10目录下面有spark-assembly-1.0.0-cdh ...

  2. ios 防止按钮快速点击造成多次响应的避免方法。

    - (void)starButtonClicked:(id)sender { //先将未到时间执行前的任务取消. [[self class] cancelPreviousPerformRequests ...

  3. BZOJ1036——树的统计count

    1.题目大意:给你一棵树,有三种操作 1>qmax,询问u到v中间点权的最大值 2>qsum,询问u到v中间点权和 3>change,把u这个节点的权值改为v 2.分析:树链剖分的裸 ...

  4. [转载]PO BO VO DTO POJO DAO概念及其作用

    原文链接:http://jeoff.blog.51cto.com/186264/88517/ POJO = pure old java object or plain ordinary java ob ...

  5. HDU 2222 ----AC自动机

    Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...

  6. 2.AngularJS MVC

    AngularJs的MVC全部借助于$scope(作用域)实现 1.ng指令 <!doctype html> <html ng-app> <head> <me ...

  7. AJAX 页面数据传递

    $.ajax({ //一个Ajax过程 type: "post", //以post方式与后台沟通 url: "personstockajax.php", //与 ...

  8. BOM基础部分

    打开.关闭窗口 •open –蓝色理想运行代码功能 •close –关闭时提示问题   常用属性 •window.navigator.userAgent •window.location   窗口尺寸 ...

  9. 嵌套div中margin-top转移问题的解决办法

    在这两个浏览器中,有两个嵌套关系的div,如果外层div的父元素padding值为0,那么内层div的margin-top或者margin-bottom的值会“转移”给外层div. <!DOCT ...

  10. springboot 整合Redis

    0.导入 maven依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifact ...