Problem:

  1. Develop a k-NN classifier with Euclidean distance and simple voting
  2. Perform 5-fold cross validation, find out which k performs the best (in terms of accuracy)
  3. Use PCA to reduce the dimensionality to 6, then perform 2) again. Does PCA improve the accuracy
问题:
  1. 设计一个采用欧式距离的的knn分类器
  2. 应用5-fold进行交叉验证,寻找出最好的k值(从准确度考虑)
  3. 使用PCA进行降维操作,将维数降至6维,这样应用PCA之后准确率有改善吗?

开发的knn算法通过计算TestData中每一个观察点和TrainningData中的观察点的距离,得到k个最近距离的索引,然后统计其中频次最高的Class,并将这个Class作为该TestData的Class值。

knn算法的Matlab源代码:

function [OutputClass] = myKNN(TestData,TrainningData,Group,K)
[M,N] = size(TrainningData);
[R,C] = size(TestData);
OutputClass=[];
for i=1:R
diff=TrainningData-repmat(TestData(i,:),M,1);
dist=diff.*diff;
[DistSort,Index]=sort(sum(dist,2),'descend');
N=hist(Group(Index(1:K),:),3);%histgram of class
[MaxClassSort,MaxSort]=sort(N,'descend');
%MaxSort
MaxClass=MaxSort(1);
OutputClass(end+1)=MaxClass;
end
OutputClass=OutputClass';
save('knn.mat');

通过观察PCA处理之后的特征值,发现只有6个特征值不为0,这样采用PCA降维的方法实现的将源数据13维降为6维之后没有损失能量,所以最后直接进行KNN分类的结果和采用PCA分类的结果是一致的,数据处理的难度却下降了。并且当K=1的时候准确率最高。

MaxAccuracy= 0.7525 when k=1 (KNN&PCA+KNN)

PCA算法处理之后的特征值

……

【StatLearn】统计学习中knn算法的实验(1)的更多相关文章

  1. 【StatLearn】统计学习中knn算法实验(2)

    接着统计学习中knn算法实验(1)的内容 Problem: Explore the data before classification using summary statistics or vis ...

  2. 学习OpenCV——KNN算法

    转自:http://blog.csdn.net/lyflower/article/details/1728642 文本分类中KNN算法,该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似( ...

  3. Machine Learning In Action 第二章学习笔记: kNN算法

    本文主要记录<Machine Learning In Action>中第二章的内容.书中以两个具体实例来介绍kNN(k nearest neighbors),分别是: 约会对象预测 手写数 ...

  4. 统计学习中感知机的C++代码

    感知机是古老的统计学习方法,主要应用于二类线性可分数据,策略是在给定的超平面上对误差点进行纠正,从而保证所有的点都是正确可分的. 用到的方法是随机梯度下降法,由于是线性可分的,可保证最终在有限步内收敛 ...

  5. KNN算法的R语言实现

    近邻分类 简言之,就是将未标记的案例归类为与它们最近相似的.带有标记的案例所在的类. 应用领域: 1.计算机视觉:包含字符和面部识别等 2.推荐系统:推荐受众喜欢电影.美食和娱乐等 3.基因工程:识别 ...

  6. 机器学习(一)之KNN算法

    knn算法原理 ①.计算机将计算所有的点和该点的距离 ②.选出最近的k个点 ③.比较在选择的几个点中那个类的个数多就将该点分到那个类中 KNN算法的特点: knn算法的优点:精度高,对异常值不敏感,无 ...

  7. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  8. SVM(支持向量机)与统计机器学习 & 也说一下KNN算法

    因为SVM和统计机器学习内容很多,所以从 http://www.cnblogs.com/charlesblc/p/6188562.html 这篇文章里面分出来,单独写. 为什么说SVM和统计学关系很大 ...

  9. 【转载】K-NN算法 学习总结

    声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接, ...

随机推荐

  1. emacs之配置代码风格

    emacsConfig/code-style-setting.el (add-hook 'c-mode-common-hook ( lambda() ( c-set-style "java& ...

  2. mysql 查询所有父级名称

    SELECT T2.id, T2.name FROM ( SELECT @r AS _id, ,,@stop) as stop, (SELECT @r := p_id FROM goods_class ...

  3. mysql-3 数据表的创建、增删改查

    1.创建数据表 通用语法:CREATE TABLE table_name (column_name column_type); CREATE TABLE IF NOT EXISTS `csj_tbl` ...

  4. python编程遇见的异常

    import sys print('目前系统的编码为:',sys.getdefaultencoding()) # 目前系统的编码为: utf-8 name = 'this is a test!' pr ...

  5. ckplayer的Error #2033:Can not call javascript:ckstyle()解决

    在我们添加多个视频的时候,就会出现这个报错:Error #2033:Can not call javascript:ckstyle(); 但是也不是所有的浏览器都不能正常运行,我这边就是IE10不能正 ...

  6. Day15-Django

    all_entries = Entry.objects.all() #查询所有 Entry.objects.filter(pub_date__year=2006) #查询所有pub_date为2006 ...

  7. sqlplus rlwrap readline

  8. Pyhton项目实践:将带有美国风格日期的文件改名为欧洲风格日期

    题目 项目要求:上千个文本文件,文件名包含美国风格的日期( MM-DD-YYYY),需要将它们改名为欧洲风格的日期( DD-MM-YYYY) 先写个创建一百个美国风格日期的文件 #! python # ...

  9. fireDAC oracle

    copy 4 files to D:\oracleapp\Administrator\product\11.2.0\client_1\BIN setup win 64 bit client .down ...

  10. 用MyEclipse JPA创建项目

    http://www.myeclipsecn.com/learningcenter/persistence-development/myeclipse-jpa/ 用MyEclipse JPA创建项目 ...