简介:

ICG游戏:Impartial Combinatorial Games,公平的组合游戏。

以下是定义,来自网络,可能不够严谨:

1、两名选手;
2、两名选手轮流行动,每一次行动可以在有限合法操作集合中选择一个;
3、游戏的任何一种可能的局面(position),合法操作集合只取决于这个局面本身;局面的改变称为“移动”(move)。
4、若轮到某位选手时,该选手的合法操作集合为空,则这名选手判负。

必胜和必败,指如果若按规定且可行的方法走,则必定胜利;必败,指无论怎么走必定失败。某些资料称为奇异非奇异态,PN态,等差不多。

来源:

写这篇文章,主要是源于巧克力游戏的证明(Strategy-stealing):

有个n*m的矩阵(巧克力块),两人轮流取一个点;每次取完后,需要把其右上方所有巧克力都吃了;吃到最左下方的输。先手是否必胜?

有证明如下:

如果后手存在必胜,则只要先手第一次取最右上方的,后手取的必包含最右上方的,那先手其实第一次就可以取后手取的那个。

即后手第二步走的,先手都可以在第一步就走。由此证明后手不存在必胜,先手必胜。

补充证明:

刚看到证明,觉得只是证明了后手不存在必胜,并不能说明先手必胜。

如果加上一个条件即可:在ICG游戏中,先手不是必胜就是必败,后手同理。

证明:

双方互相决策,有限步骤,可以用树来描述,树的叶子节点是胜或者败;

由于双方都是足够聪明,所以,如果某个叶子是胜,则其父节点也是胜,因为父节点必定会选择胜利的途径;如果某子树叶子全是败,则其父节点也是败;

一直往上递推,则最后,推到根节点有若干个叶子,如果有胜节点则根节点胜;如果全是败则根节点败;

则证明,先手不是必胜就是必败。

梳理:

回到刚才的反证法,梳理下:

后手有必胜=>先手必败=>推出矛盾。则先手不是必败,又由上面证明得知先手不是必胜就是必败,所以先手必胜。

扩展:

对于这种多走一步一定不是坏事,且决策对策的游戏(可能是非ICG),都可以用类似的方法证明后手没有必胜策略。但这不代表先手有。

ICG游戏:证明,先手不是必胜就是必败。的更多相关文章

  1. ICG游戏:尼姆游戏异或解法的证明

    描述: 尼姆博奕(Nimm Game),有n堆石子,每堆石子有若干石子,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限.取走最后石子的人获胜. 标准解法: 判断: 先计算先手是必胜还是 ...

  2. ICG游戏:斐波那契博弈

    描述: 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍: ...

  3. {HDU}{2516}{取石子游戏}{斐波那契博弈}

    题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...

  4. Nim游戏变种——取纽扣游戏

    (2017腾讯实习生校招笔试题)Calvin和David正在玩取纽扣游戏,桌上一共有16个纽扣,两人轮流来取纽扣,每人每次可以选择取1个或3个或6个(不允许不取),谁取完最后的纽扣谁赢.Cavin和D ...

  5. Nim游戏变种——取纽扣谁先取完

    (2017腾讯实习生校招笔试题)Calvin和David正在玩取纽扣游戏,桌上一共有16个纽扣,两人轮流来取纽扣,每人每次可以选择取1个或3个或6个(不允许不取),谁取完最后的纽扣谁赢.Cavin和D ...

  6. Codeforces 455B A Lot of Games:博弈dp【多局游戏】

    题目链接:http://codeforces.com/problemset/problem/455/B 题意: 给你n个字符串,然后进行k局游戏. 每局游戏开始有一个空串,然后双方轮流给这个串的末尾添 ...

  7. Ferguson游戏&&Ua12293——打表找规律

    题意 有两个盒子分别有m颗糖果和n颗糖果,每次移动是将一个盒子清空而把另一个盒子里得一些糖果拿到被清空的盒子,使得两个盒子至少各有一个.无法移动者输. 分析 设初始状态为(m, n),显然(1, 1) ...

  8. 【BZOJ】【3404】【USACO2009 Open】Cow Digit Game又见数字游戏

    博弈论 Orz ZYF 从前往后递推……反正最大才10^6,完全可以暴力预处理每个数的状态是必胜还是必败(反正才两个后继状态),然后O(1)查询……我是SB /******************** ...

  9. sg函数与博弈论

    这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...

随机推荐

  1. 银行卡号每隔4位插入空格 (再用户填写银行卡号的时候挺有用的) IE9+

    链接 输入4为数字, 再输入一个数字调试一下就能看懂了 <head lang="en"> <meta charset="UTF-8"> ...

  2. Win7系统Visual Studio 2013配置OpenCV3.1图文详解

    Win7系统Visual Studio 2013配置OpenCV3.1图文详解 OpenCV3.1对硬件加速和移动开发的支持相对于老版本都有了较大改进,支持新的开发工具,更易于扩展,配置方式也比以前简 ...

  3. Java其他API介绍

    有一些类虽然不像集合.多线程.网络编程中的类那样属于Java中的核心类,但是它们在开发过程中给我们带来很多便利,这里就对它们做下简要的介绍和演示. 一.System类 System类中的构造方法是私有 ...

  4. TypeScript学习笔记(二) - 基本类型

    本篇将简单介绍TypeScript的几种基本类型. TypeScript基本类型有如下几种: Boolean Number String Array Tuple Enum Any 另外还有void类型 ...

  5. QLoo graphql engine 学习一 基本试用(docker&&docker-compose)

      说明:使用docker-compose 进行安装 代码框架 使用命令行工具创建 qlooctl install docker qloo-docker 运行qloo&&gloo 启动 ...

  6. pfsense openvpn上网终于通了

    先看配置,等会在说过程中遇到的问题: 1.openvpn配置: /var/etc/openvpn/server2.conf下: port 1195 proto tcp dev tap writepid ...

  7. MyEclipse 代码里的中文字太小设置方法

    General>Appearance>Colors and Fonts>Basic>Text Font >Edit 把脚本字符改成“中欧字符”就可以了

  8. GREENPLUM简介

    什么是GREENPLUM? 对于很多IT人来说GREENPLUM是个陌生的名字.简单的说它就是一个与ORACLE, DB2一样面向对象的关系型数据库.我们通过标准的SQL可以对GP中的数据进行访问存取 ...

  9. python3调用阿里云短信服务

    #!/usr/bin/env python#-*- coding:utf-8 -*-#Author:lzd import uuidimport datetimeimport hmacimport ba ...

  10. flask 蓝图

    转自:http://spacewander.github.io/explore-flask-zh/7-blueprints.html 蓝图 什么是蓝图? 一个蓝图定义了可用于单个应用的视图,模板,静态 ...