hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
System Crawler (2014-11-09)
Description
You are a fan of Josh and you bought this glass at the astronomical sum of money. Since the glass is thick enough to put erectly on the table, you want to know in total how many ways you can put it so that you can enjoy as many as possible different paintings hiding on the glass. We assume that material of the glass is uniformly distributed. If you can put it erectly and stably in any ways on the table, you can enjoy it.
More specifically, if the polygonal glass is like the polygon in Figure 1, you have just two ways to put it on the table, since all the other ways are not stable. However, the glass like the polygon in Figure 2 has three ways to be appreciated. 
Pay attention to the cases in Figure 3. We consider that those glasses are not stable. 
Input
For each test case, the first line is an integer n representing the number of lines of the polygon. (3<=n<=50000). Then n lines follow. The ith line contains two real number x i and y i representing a point of the polygon. (x i, y i) to (x i+1, y i+1) represents a edge of the polygon (1<=i<n), and (x n,y n) to (x 1, y 1) also represents a edge of the polygon. The input data insures that the polygon is not self-crossed.
Output
Sample Input
4
0 0
100 0
99 1
1 1
6
0 0
0 10
1 10
1 1
10 1
10 0
Sample Output
3
Hint
The sample test cases can be demonstrated by Figure 1 and Figure 2 in Description part.
思路:划分三角形求个重心,再把原来的多边形求个凸包拓展为凸多边形,对此时凸包每边做重心垂线,若垂足落在边内不包括中点就能以这条边稳定
#include <iostream>
#include <cmath>
#include <iomanip>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <algorithm> using namespace std; const int maxn=60100;
const double eps=1e-10; double add(double a,double b)
{
if(abs(a+b)<eps*(abs(a)+abs(b))) return 0;
return a+b;
} struct point
{
double x,y;
point () {}
point(double x,double y) : x(x),y(y){
}
point operator + (point p){
return point(add(x,p.x),add(y,p.y));
}
point operator - (point p){
return point(add(x,-p.x),add(y,-p.y));
}
point operator * (double d){
return point(x*d,y*d);
}
double dot(point p){
return add(x*p.x,y*p.y);
}
double det(point p){
return add(x*p.y,-y*p.x);
} } pi[maxn];
int nn; bool on_seg(point p1,point p2,point q)
{
return (p1-q).det(p2-q)==0&&(p1-q).dot(p2-q)<=0;
}
point intersection(point p1,point p2,point q1,point q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
}
bool cmp_x(const point& p,const point& q)
{
if(p.x!=q.x) return p.x<q.x;
return p.y<q.y;
} vector<point> convex_hull(point * ps,int n)
{
sort(ps,ps+n,cmp_x);
int k=0; //凸包的顶点数
vector<point> qs(n*2);
for(int i=0;i<n;i++){
while(k>1&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
for(int i=n-2,t=k;i>=0;i--){
while(k>t&&(qs[k-1]-qs[k-2]).det(ps[i]-qs[k-1])<=0) k--;
qs[k++]=ps[i];
}
qs.resize(k-1);
return qs;
} point gravity(point *p,int n)
{
double area=0;
point center;
center.x=0;
center.y=0; for(int i=0;i<n-1;i++){
area+=(p[i].x*p[i+1].y-p[i+1].x*p[i].y)/2;
center.x+=(p[i].x*p[i+1].y-p[i+1].x*p[i].y)*(p[i].x+p[i+1].x);
center.y+=(p[i].x*p[i+1].y-p[i+1].x*p[i].y)*(p[i].y+p[i+1].y);
} area+=(p[n-1].x*p[0].y-p[0].x*p[n-1].y)/2;
center.x+=(p[n-1].x*p[0].y-p[0].x*p[n-1].y)*(p[n-1].x+p[0].x);
center.y+=(p[n-1].x*p[0].y-p[0].x*p[n-1].y)*(p[n-1].y+p[0].y); center.x/=6*area;
center.y/=6*area; return center;
}
bool judge(point cen,point ind1,point ind2){//判断是否落在底边内
point v=ind1-ind2;
point w;w.x=v.y;w.y=-v.x;
point u=ind2-cen;
double t=w.det(u)/v.det(w);
// printf("%.8f\n",t);
if(t<1&&t>0)return true;
return false;
}
void solve()
{
vector<point> pp;
point cen;
cen=gravity(pi,nn);
pp=convex_hull(pi,nn);
int ans=0;
for(int i=0;i<pp.size();i++){
if(judge(cen,pp[i],pp[(i+1)%pp.size()])){
ans++;
}
}
printf("%d\n",ans);
return ;
} int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&nn);
for(int i=0;i<nn;i++) scanf("%lf%lf",&pi[i].x,&pi[i].y);
solve();
}
}
hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1的更多相关文章
- hdu 3695 10 福州 现场 F - Computer Virus on Planet Pandora 暴力 ac自动机 难度:1
F - Computer Virus on Planet Pandora Time Limit:2000MS Memory Limit:128000KB 64bit IO Format ...
- hdu 3682 10 杭州 现场 C - To Be an Dream Architect 简单容斥 难度:1
C - To Be an Dream Architect Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d &a ...
- hdu 3682 10 杭州 现场 C To Be an Dream Architect 容斥 难度:0
C - To Be an Dream Architect Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d &a ...
- hdu 3687 10 杭州 现场 H - National Day Parade 水题 难度:0
H - National Day Parade Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- hdu 3699 10 福州 现场 J - A hard Aoshu Problem 暴力 难度:0
Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...
- hdu 3694 10 福州 现场 E - Fermat Point in Quadrangle 费马点 计算几何 难度:1
In geometry the Fermat point of a triangle, also called Torricelli point, is a point such that the t ...
- hdu 3697 10 福州 现场 H - Selecting courses 贪心 难度:0
Description A new Semester is coming and students are troubling for selecting courses. Students ...
- hdu 3696 10 福州 现场 G - Farm Game DP+拓扑排序 or spfa+超级源 难度:0
Description “Farm Game” is one of the most popular games in online community. In the community each ...
- hdu 4771 13 杭州 现场 B - Stealing Harry Potter's Precious 暴力bfs 难度:0
Description Harry Potter has some precious. For example, his invisible robe, his wand and his owl. W ...
随机推荐
- python基础之迭代器协议和生成器
迭代器和生成器补充:http://www.cnblogs.com/luchuangao/p/6847081.html 一 递归和迭代 略 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个ne ...
- code sandbox & mlflow
https://codesandbox.io/ https://www.jianshu.com/p/d70b25bf3cf4 https://my.oschina.net/u/2306127/blog ...
- COURSES---poj1469 hdu1083(最大匹配)
题目链接:http://poj.org/problem?id=1469 http://acm.hdu.edu.cn/showproblem.php?pid=1083 题意:有n个学生p门课, 每门 ...
- uchome 全局变量
$_SC: Array ( [dbhost] => localhost [dbuser] => root [dbpw] => root [dbcharset] => utf8 ...
- [py]django重置密码
django的admin用户被我多动症一样的测试,给密码弄丢了,需要重置. 从数据库重置的可能性为0,因为django对于密码有保护策略.考虑从运行程序的地方进行重置: 1.在程序的文件夹下,执行这样 ...
- PAT 1031 Hello World for U[一般]
1031 Hello World for U (20 分) Given any string of N (≥5) characters, you are asked to form the chara ...
- ReactNative 环境配置
一直是从事iOS的开发,现在研究下mac环境下reatNative的环境配置: 1. 安装HomeBlew(OS系统上的一个安装包管理器,安装后可以方便后续安装包的安装.) 终端命令: ruby -e ...
- [转][访谈]数据大师Olivier Grisel给志向高远的数据科学家的指引
原文:http://www.csdn.net/article/2015-10-16/2825926?reload=1 Olivier Grisel(OG)本人在InriaParietal工作,主要研发 ...
- windows live writer backup
windows live writer backup备份:http://wlwbackup.codeplex.com/
- 在Qt中如何编写插件,加载插件和卸载插件(转)
Qt提供了一个类QPluginLoader来加载静态库和动态库,在Qt中,Qt把动态库和静态库都看成是一个插件,使用QPluginLoader来加载和卸载这些库.由于在开发项目的过程中,要开发一套插件 ...